नीचे दिए गए संरक्षी सदिश क्षेत्र F के लिए, निम्नलिखित में से कौन सी अदिश विभव है?

F = (y2.cosx + az3)ax + (2y.sinx - 4)ay + (3xz2 + 2)az एक पूर्णांक है:

This question was previously asked in
ISRO Scientist ECE: 2018 Official Paper
View all ISRO Scientist EC Papers >
  1. नहीं ज्ञात किया जा सकता
  2. xz3 +y2 sinx -4y +2z
  3. 2yCosx - y2Sinx -2y +4z
  4. 2ySinx - z2Cosx - 2y +4z

Answer (Detailed Solution Below)

Option 2 : xz3 +y2 sinx -4y +2z
Free
ISRO Scientist Electronics Full Test - 1
0.8 K Users
95 Questions 100 Marks 120 Mins

Detailed Solution

Download Solution PDF

संकल्पना:

  • एक संरक्षी क्षेत्र के लिए, एक बंद पथ के चारों ओर इकाई कणों को स्थानांतरित करने में किया गया कुल कार्य 0 होता है।

अर्थात \(\oint \vec F.dl = 0\)

  • स्टोक्स प्रमेय का उपयोग करके, इसे इस प्रकार भी लिखा जा सकता है \(\nabla \times \vec F = 0\)
  • एक संरक्षी सदिश क्षेत्र के लिए, जिसके लिए \(\nabla \times \vec F = 0\), F को एक अदिश V के प्रवणता के रूप में दर्शाया जा सकता है। यह फलन V को संरक्षी सदिश क्षेत्र का अदिश विभव कहा जाता है

गणना:

\(\vec F = \left( {{y^2}\cos x + a{z^3}} \right)\hat i + \left( {2y\sin x - 4} \right)\hat j\)

\( + \left( {3x{z^2} + 2} \right)\hat k\)

जहाँ a एक पूर्णांक है।

एक संरक्षी सदिश क्षेत्र के लिए \(\nabla \times \vec F = 0\)

उपरोक्त को हल करने पर, हमें a का मान प्राप्त होता है;

\(\left| {\begin{array}{*{20}{c}} {\hat i}&{\hat j}&{\hat k} \\ {\frac{\partial }{{\partial x}}}&{\frac{\partial }{{\partial y}}}&{\frac{\partial }{{\partial z}}} \\ {{y^2}\cos x + a{z^3}}&{2y\sin x - 4}&{3x{z^2} + 2} \end{array}} \right| = 0\)

î (0 - 0) - ĵ (3z2 + 0 - 3 az2) + k̂ (2y cos x - 2y cos x)

उपरोक्त के लिए एक 0 सदिश होने के लिए,

3 z2 - 3 az2 = 0

अर्थात a = 1

इसलिए,

\(\vec F = \left( {{y^2}\cos x + {z^3}} \right)\hat i + \left( {2y\sin x - 4} \right)\hat j +\)

\( \left( {3x{z^2} + z} \right)\hat k\)

F को \(\vec F = \nabla V\) को भी संतुष्ट करना चाहिए

साथ ही, F एक संरक्षी सदिश क्षेत्र है जिसे एक अदिश विभव V के प्रवणता के रूप में व्यक्त किया जा सकता है।

और यह केवल विकल्प (2) के लिए है, कि उपरोक्त शर्त संतुष्ट है।

अर्थात यदि, V = xz3 + y2 sin x - 4y + 2z

तब, \(\nabla .V = \frac{\partial }{{\partial x}}\left( {x{z^2} + {y^2}\sin x - 4y + 2z} \right)\hat i\)

\(+ \frac{\partial }{{\partial x}}\left( {x{z^3} + {y^2}\sin x + 4y + 2z} \right) + \frac{d}{{dz}}\left( {x{z^3} + {y^2}\sin x - 4y + 2z} \right)\)

= (y2 cos x + z3) î + (2y sin x - 4) ĵ + (3xz2 + 2) k̂, जो केवल है।

इसलिए, विकल्प (2) सही है
Latest ISRO Scientist EC Updates

Last updated on Apr 11, 2023

The official notification of the ISRO Scientist EC 2025 is expected to be out soon! The previous official ISRO Scientist Notification for Electronics was released by the Indian Space Research Centre (ISRO) on 29th November 2022 for a total of 21 vacancies. Applicants applying for the exam should have a B.E./B.Tech or equivalent degree in Electronics & Communication Engineering to be eligible for the recruitment process. Candidates can also refer to the ISRO Scientist EC Previous Year Papers to understand the type of questions asked in the exam and increase their chances of selection.

More Vector Operators Questions

More Vector Calculus Questions

Get Free Access Now
Hot Links: teen patti lotus teen patti casino download teen patti master apk download teen patti master plus teen patti app