For the following probability distribution

X 1 2 3 4
P(X) \(\frac{1}{10}\) \(\frac{1}{5}\) \(\frac{3}{10}\) \(\frac{2}{5}\)


E(X2) is equal to

  1. 3
  2. 5
  3. 7
  4. 10

Answer (Detailed Solution Below)

Option 4 : 10

Detailed Solution

Download Solution PDF

Concept:

The expectation of a random variable E(X2) is given by \(\Sigma {x^2P(x) }\)

Calculation:

Given 

X 1 2 3 4
P(X) \(\frac{1}{10}\) \(\frac{1}{5}\) \(\frac{3}{10}\) \(\frac{2}{5}\)

 

Expectation E(X2) is calculated by \(\Sigma {x^2P(x) }\)

⇒ E(X2) = \(\left(1^2\times\frac{1}{10}\right) +\left(2^2\times\frac{1}{5}\right)+\left(3^2\times\frac{3}{10}\right)+\left(4^2\times\frac{2}{5}\right)\)

⇒ E(X2) = \(\frac{1}{10}+\frac{4}{5}+\frac{27}{10}+\frac{32}{5}\)

E(X2) = \(\frac{100}{10}\) = 10 

The value of E(X2) is equal to 10.

The correct answer is option 4.

More Mean and Variance of Random variables Questions

More Probability Questions

Get Free Access Now
Hot Links: teen patti all app teen patti fun teen patti sequence teen patti diya