যদি \(\rm \int \sqrt{1 - sin 2x} \space dx\) = A sinx + B cosx + C হয়, যেখানে 0 < x < \(\frac{\pi}{4}\), তবে নীচের কোনটি সঠিক?

This question was previously asked in
NDA 02/2021: Maths Previous Year paper (Held On 14 Nov 2021)
View all NDA Papers >
  1. A + B = 0
  2. A + B - 2 = 0
  3. A + B + 2 = 0
  4. A + B - 1 = 0

Answer (Detailed Solution Below)

Option 2 : A + B - 2 = 0
Free
BSF HC RO/RM All India Mega Live Test
5.4 K Users
100 Questions 200 Marks 120 Mins

Detailed Solution

Download Solution PDF

ধারণা:

sin2x + cos2x = 1

\(\rm \int sin x dx = -cosx \)

\(\rm \int cos x dx = sin x \)

গণনা:

আমরা জানি \(\rm \int \sqrt{1 - sin 2x} \space dx\) = A sinx + B cosx + C

⇒ \(\rm \int (\sqrt{sin^{2}x + cos^{2}x - 2sinx cosx} )dx\) = A sinx + B cosx + C

⇒ \(\rm \int (\sqrt{(sinx - cosx)^{2}})dx\) = A sinx + B cosx + C

⇒ \(\rm \int (|(sinx - cosx)|)dx\) = A sinx + B cosx + C     ----(i)

যদি 0 < x < \(\frac{\pi}{4}\) হয়, তবে sinx < cosx

⇒ |sinx - cosx| = -sinx + cosx    -----(ii)

এখন (i) ও (ii) থেকে আমরা পাই 

⇒ \(\rm \int (-\space sinx + cosx) \space dx\) = A sinx + B cosx + C

⇒ cosx + sinx + C = A sinx + B cosx + C

A = 1, B = 1 এবং C = 0 তুলনা করে পাই

সুতরাং, A + B - 2 = 0 সঠিক।

Latest NDA Updates

Last updated on May 30, 2025

->UPSC has released UPSC NDA 2 Notification on 28th May 2025 announcing the NDA 2 vacancies.

-> A total of 406 vacancies have been announced for NDA 2 Exam 2025.

->The NDA exam date 2025 has been announced for cycle 2. The written examination will be held on 14th September 2025.

-> Earlier, the UPSC NDA 1 Exam Result has been released on the official website.

-> The selection process for the NDA exam includes a Written Exam and SSB Interview.

-> Candidates who get successful selection under UPSC NDA will get a salary range between Rs. 15,600 to Rs. 39,100. 

-> Candidates must go through the NDA previous year question paper. Attempting the NDA mock test is also essential. 

Get Free Access Now
Hot Links: teen patti circle teen patti app teen patti neta