Domain or Range MCQ Quiz in తెలుగు - Objective Question with Answer for Domain or Range - ముఫ్త్ [PDF] డౌన్‌లోడ్ కరెన్

Last updated on Mar 20, 2025

పొందండి Domain or Range సమాధానాలు మరియు వివరణాత్మక పరిష్కారాలతో బహుళ ఎంపిక ప్రశ్నలు (MCQ క్విజ్). వీటిని ఉచితంగా డౌన్‌లోడ్ చేసుకోండి Domain or Range MCQ క్విజ్ Pdf మరియు బ్యాంకింగ్, SSC, రైల్వే, UPSC, స్టేట్ PSC వంటి మీ రాబోయే పరీక్షల కోసం సిద్ధం చేయండి.

Latest Domain or Range MCQ Objective Questions

Top Domain or Range MCQ Objective Questions

Domain or Range Question 1:

If \({\sin ^{ - 1}}\frac{1}{2} = {\tan ^{ - 1}}\) x, then x =

  1. √3
  2. \(\frac{1}{{\sqrt 3 }}\)
  3. \(\frac{1}{{\sqrt 2 }}\)
  4. None of these

Answer (Detailed Solution Below)

Option 2 : \(\frac{1}{{\sqrt 3 }}\)

Domain or Range Question 1 Detailed Solution

Concept:

Use simply trigonometric identities.

\(sin^{-1}\left ( sinx \right )= x\)

Solutions: 

We know that \(sin30^\circ =\frac{1}{2}\) and this implies 

\(sin^{-1}\left ( sin30^\circ \right )=tan^{-1}x\)

Using the rule \(sin^{-1}\left ( sinx \right )= x\) then 

\(30^\circ = tan^{-1}x\)

Now taking tan of both side 

\(tan30^\circ = x\)

we again know that the value of \(tan30^\circ = \frac{1}{\sqrt{3}}\) then 

\(x= \frac{1}{\sqrt{3}}\)

The final answer to this question is  \(x= \frac{1}{\sqrt{3}}\), and option 2 is correct.

Domain or Range Question 2:

Comprehension:

Consider the following for the next items that follow:

A function is defined by f(x) = π + sin2 x.

What is the range of the function?

  1. [0, 1]
  2. [π, π + 1]
  3. [π - 1, π + 1]
  4. [π - 1, π - 1]

Answer (Detailed Solution Below)

Option 2 : [π, π + 1]

Domain or Range Question 2 Detailed Solution

Concept:

Range of sin θ is [-1, 1]

Calculation:

Given that

f(x) = π + sin2 x.

The given function is a combination of a constant term (π) and the

square of the sine function sin2 x.

We know that 

-1 ≤ sin x ≤ 1 

⇒ 0 ≤ sin2x ≤ 1 

⇒ π + 0  ≤ π + sin2x ≤ π + 1 

Therefore, the range of π + sin2 x is [π, π + 1].

Domain or Range Question 3:

Find the maximum value of |-2 + sin θ|.

  1. 3
  2. 2
  3. 1
  4. More than one of the above
  5. None of the above

Answer (Detailed Solution Below)

Option 1 : 3

Domain or Range Question 3 Detailed Solution

Concept:

We know that, \(\rm -1 \leq sin \;\theta \leq 1\)

Calculations:

We know that, \(\rm -1 \leq sin \;\theta \leq 1\)

Adding - 2 on both side, we get

\(\rm -2 -1 \leq -2 + sin \;\theta \leq -2+ 1\)

\(\rm -3 \leq -2 + sin \;\theta \leq -1\)

If we take mod inequality will be changed.

\(\rm |-3| \leq |-2 + sin \;\theta| \leq |-1|\)

∴  \(\rm 1 \leq |-2 + sin \;\theta| \leq 3\)

Hence, the maximum value of |-2 + sin θ| is 3.

Domain or Range Question 4:

Find the range of sin x - √8cos x - 2 

  1. (- 3, 3)
  2. [-3, 3]
  3. [- 5, 1]
  4. More than one of the above
  5. None of the above

Answer (Detailed Solution Below)

Option 3 : [- 5, 1]

Domain or Range Question 4 Detailed Solution

Concept:

The minimum and maximum value of a.sin x ± b.cos x is given by:

\(\rm - \sqrt {{a^2 + b^2}} ≤ a\sin x \pm b\cos x ≤ \sqrt{a^2 + b^2}\)

Calculation:

Given: sin x - √8cos x - 2 

Compare sin x - √8cox x is a.sinx - b.cosx 

Here a = 1 and b = √8

⇒  \(\rm - \sqrt {{(1^2 + √{8}^2}}) ≤ \sin x - \sqrt 8 \cos x ≤ \sqrt {{(1^2 + √{8}^2}}\)

⇒ \(\rm - 3 ≤ sin x - √ 8.cosx ≤ 3\)

Subtract 2 in the above equation

⇒ -3 - 2 ≤ sin x - √8.cos x - 2 ≤ 3 - 2

⇒ -5 ≤ sin x - √8.cos x - 2 ≤ 1

Range [- 5, 1]

Domain or Range Question 5:

Comprehension:

Consider the following for the next items that follow:

A function is defined by f(x) = π + sin2 x.

What is the period of the function?

  1. π
  2. \(\frac{\pi}{2}\)
  3. The function is non-periodic

Answer (Detailed Solution Below)

Option 2 : π

Domain or Range Question 5 Detailed Solution

Concept: 

The period of the function f(x) = π + sin2 x is determined by the

periodicity of the sine function, as the sin2 x.

Calculation:

Given that 

f(x) = π + sin2 x    ----(1)

The cos x function has a period of 2π.

The cos 2x function has a period of π.

We know that 

sin2x = (1 = cos 2x)/2

As, adding or subtracting a constant number does not affect the period

of the function.

Hence, The period of the function π + sin2 x is π.

Domain or Range Question 6:

Comprehension:

Direction: For the next two (2) items that follow:

Consider the equation k sin x + cos 2x = 2k - 7

If the equation possesses solution, then what is the maximum value of k?

  1. 1
  2. 2
  3. 4
  4. 6

Answer (Detailed Solution Below)

Option 4 : 6

Domain or Range Question 6 Detailed Solution

Concept:

  • If the given equation is in quadratic form ax2 + bx + c=0, then its solution is found as \(x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}\).
  • -1 ≤ sin x ≤ 1
  • cos 2x = 1 - 2sin2x

Calculation:

k sin x + cos 2x = 2k - 7

k sin x + 1 - 2sin2x = 2k - 7

⇒ -2sin2x + k sin x + 1 - 2k + 7 = 0 

⇒ -2sin2x + k sin x - 2k + 8 = 0

⇒ 2sin2x - k sinx + 2k - 8 = 0  ...(Multiply by -)

After comparing with Quadratic equation, a = 2, b = -k, c = (2k - 8)

⇒ \(sin~x=\frac{k\pm\sqrt{k^2-8(2k-8)}}{4}\)

\(\Rightarrow sin~x=\frac{k\pm\sqrt{k^2-16k+64}}{4}\)

\(\Rightarrow sin~x=\frac{k\pm\sqrt{(k-8)^2}}{4}\)

\(\Rightarrow sin~x=\frac{k\pm{(k-8)}}{4}\)

\(\Rightarrow sin~x=\frac{k+{(k-8)}}{4},\frac{k-{(k-8)}}{4}\)

\(\Rightarrow sin~x=\frac{2k{-8}}{4},\frac{{8}}{4}\)

⇒ sin x = \(\frac{k-4}{2}\) and sin x = 2,

Since, sin x cannot be greater than 1,

Thus, sin x ≤ 1

\(\frac{k-4}{2}≤1\)

k - 4 ≤ 2

k ≤ 6

Thus, the maximum value of k is 6.

Domain or Range Question 7:

Find the domain and range of the function whose graph is as shown below

F4 Madhuri Engineering 26.04.2022 D1

  1. Domain = R - [-1, 1], Range = [-1,1]
  2. Domain = R - {x : x = nπ, n ∈ Z}, Range = R - (-1, 1)
  3. Domain = R - {x : x =(2n+1)π, n∈Z}, Range = R - [-1, 1]
  4. Domain = R - {x : x = nπ, n∈Z}, Range = R 
  5. None of the above

Answer (Detailed Solution Below)

Option 2 : Domain = R - {x : x = nπ, n ∈ Z}, Range = R - (-1, 1)

Domain or Range Question 7 Detailed Solution

Concept:

  • The domain of a function is the set of values that we are allowed to plug into our function.
  •  The range is the set of all possible values that the function will give when we give in the domain as input.

Calculation:

The above graph is of the function cosecx

Since \(cosec x = \frac{1}{sinx}\), the domain of the cosec function is the set {x : x ∈ R and x ≠ nπ, n ∈ Z} or R - {x : x = nπ, n ∈ Z} and 

the range set is the set {y : y ∈ R and y ≥ 1 or y ≤ -1} 

i.e., the set R - (-1,1).

It means that y = cosec x assumes all real values except -1 < y < 1 and is not defined for the integral multiple of π.

Hence, the correct answer is option 2).

Domain or Range Question 8:

The domain of sin-1 x is

  1. (-π, π )
  2. [-1, 1]
  3. (0, 2π)
  4. (-∞, ∞)
  5. [-2, 1]

Answer (Detailed Solution Below)

Option 2 : [-1, 1]

Domain or Range Question 8 Detailed Solution

Concept: 

Where the function is defined is called the range of the inverse trigonometric function and the values we get are called the domain of the inverse trigonometric function.

Solutions  -

Function  Domain Range 
\(sin^{-1}x\) [-1,1] \(\frac{-\pi}{2}\leq y\leq \frac{\pi}{2}\)
\(cos^{-1}x\) [-1,1] \(0\leq y\leq \pi\)
\(tan^{-1}x\) whole real number \(\frac{-\pi}{2}< y< \frac{\pi}{2}\)
\(cot^{-1}x\) whole real number \(0

 

So the final answer is  [-1,1] hence option 2 is correct.

Alternate Method

Let \(sin^{-1}x=A \Rightarrow x = sinA\) 

and we all know that the Sin function is defined on a whole real line so the range of the given function is \(\mathbb{R}\). and the values which we get of sin function for the whole real line is in between [-1,1] because sin function is periodic and oscillates between 1 and -1 on the whole real line.

So the final answer is  [-1,1] hence option 2 is correct.

Domain or Range Question 9:

What is the range of the function f(x) = 1 - sinx defined on entire real line?

  1. (0, 2)
  2. [0, 2]
  3. (-1, 1)
  4. [-1, 1]
  5. [-2, 2]

Answer (Detailed Solution Below)

Option 2 : [0, 2]

Domain or Range Question 9 Detailed Solution

Concept:

The range of a function is the set of all its outputs.

Example:

Let us consider the function f: A→ B,

where f(x) = 2x and A and B = {set of natural numbers}.

Here we say A is the domain and B is the co-domain.

The set of ƒ images of all the elements of A is known as the range of ƒ.  

Calculation:

f(x) = 1 - sinx 

Here the domain of f(x) is (-∞, ∞)

At this domain, the range of sinx is [-1, 1]

Range of f(x) = 1 - sin2x = 1 - [-1, 1] 

⇒ f(x) = [0 , 2]

∴ Range of f(x) is [0 , 2].

Domain or Range Question 10:

The range of the function f(x) = 7 cos(10x + 4π) is

  1. [−1, 1]
  2. [-4π, 4π]
  3. [-10, 10]
  4. [-7, 7]
  5. [-2π, 2π]

Answer (Detailed Solution Below)

Option 4 : [-7, 7]

Domain or Range Question 10 Detailed Solution

Concept Used:

The range of cos(x) is [-1, 1]

Calculation

Given:

f(x) = 7 cos(10x + 4π)

The range of cos(10x + 4π) is [-1, 1]

Multiply by 7:

⇒ 7 × [-1, 1] = [-7, 7]

∴ The range of f(x) = 7 cos(10x + 4π) is [-7, 7]

Hence option 4 is correct

Get Free Access Now
Hot Links: teen patti game paisa wala teen patti circle teen patti download apk teen patti casino