Indefinite Integrals MCQ Quiz in मल्याळम - Objective Question with Answer for Indefinite Integrals - സൗജന്യ PDF ഡൗൺലോഡ് ചെയ്യുക

Last updated on Mar 22, 2025

നേടുക Indefinite Integrals ഉത്തരങ്ങളും വിശദമായ പരിഹാരങ്ങളുമുള്ള മൾട്ടിപ്പിൾ ചോയ്സ് ചോദ്യങ്ങൾ (MCQ ക്വിസ്). ഇവ സൗജന്യമായി ഡൗൺലോഡ് ചെയ്യുക Indefinite Integrals MCQ ക്വിസ് പിഡിഎഫ്, ബാങ്കിംഗ്, എസ്എസ്‌സി, റെയിൽവേ, യുപിഎസ്‌സി, സ്റ്റേറ്റ് പിഎസ്‌സി തുടങ്ങിയ നിങ്ങളുടെ വരാനിരിക്കുന്ന പരീക്ഷകൾക്കായി തയ്യാറെടുക്കുക

Latest Indefinite Integrals MCQ Objective Questions

Top Indefinite Integrals MCQ Objective Questions

Indefinite Integrals Question 1:

If (x) = ekx; then find the indefinite integral of f (x)?

Answer (Detailed Solution Below)

Option 1 :

Indefinite Integrals Question 1 Detailed Solution

The correct answer is option '1'.

Concept:

Indefinite integral:

  • An indefinite integral is the integration of a function without limits.
  • Integration is the reverse process of differentiation.
  • Integration is defined for a function f(x) and it helps in finding the area enclosed by the curve, with the reference to one of the coordinate axes.


Calculation:

Integration of ekx 

Integrating f (x) = ekx with respect to dx.

where 'c' is the constant,

Indefinite Integrals Question 2:

The value of  is

Answer (Detailed Solution Below)

Option 2 :

Indefinite Integrals Question 2 Detailed Solution

Concept:

For Integration with modulus, first we have to find the point where the sign of the value of the function gets change.

Calculation:

Given:

f(x) = 5x - 3 = 0

x = 3/5

∴ from 0 to 3/5 the function is negative and 3/5 to 1 the function is positive.

Indefinite Integrals Question 3:

The value of  is

Answer (Detailed Solution Below)

Option 2 :

Indefinite Integrals Question 3 Detailed Solution

Concept:

For Integration with modulus, first we have to find the point where the sign of the value of the function gets change.

Calculation:

Given:

f(x) = 5x - 3 = 0

x = 3/5

∴ from 0 to 3/5 the function is negative and 3/5 to 1 the function is positive.

Indefinite Integrals Question 4:

 is equal to

  1. e​f(x)
  2. None of these

Answer (Detailed Solution Below)

Option 2 :

Indefinite Integrals Question 4 Detailed Solution

Let,

 

By solving through integration by parts, we get

where C is constant

Indefinite Integrals Question 5:

To evaluate one of the most suitable substitution could be

Answer (Detailed Solution Below)

Option :

Indefinite Integrals Question 5 Detailed Solution

has real roots and

So from case III: or

Indefinite Integrals Question 6:

Evaluate  sin  dx

  1. cos  + c
  2. -2 cosec  + c
  3. -2 cos  + c
  4. sec  + c

Answer (Detailed Solution Below)

Option 3 : -2 cos  + c

Indefinite Integrals Question 6 Detailed Solution

Given
We need to evaluate the integral ∫sin(√x/√/x)dx

Formula Used
using the Substitution method for integration.

Calculation:
∫ sin  dx 

⇒ Put √x = t

⇒  = dt 

⇒  

 sin  dx = 2 ∫ sin t dt = -2 cost + c = -2 cos(√x) + c

Hence, The Correct Answer is Option 3.

Indefinite Integrals Question 7:

 is not true, if n is equal to

  1. 0
  2. 1
  3. 2
  4. More than one of the above
  5. None of the above

Answer (Detailed Solution Below)

Option 5 : None of the above

Indefinite Integrals Question 7 Detailed Solution

Explanation:

 is not true for n = -1

because for n = -1

 =  = log |x| + c

(5) is correct

Indefinite Integrals Question 8:

The integral  is equal to

(where C is a constant of integration)

Answer (Detailed Solution Below)

Option 3 :

Indefinite Integrals Question 8 Detailed Solution

Explanation:

Let I = 

 ⇒ I = 

Let 2x + 3 = t ⇒ 2 dx = dt  

dx = 

⇒ I = 

⇒ l=  

⇒ I = 

⇒ I = 

⇒ I = 

⇒ I = 

⇒ I =  

⇒ I =  +  +C

⇒ I =  +  + C

⇒ I =   +  +C

⇒ I =   +   +C

⇒ I=   [ ]+C  

Substitute t = 2x + 3 in the above equation, we have

⇒ I =  [ ] +C

⇒ I =   ] +C

  =  [] +C

Hence, the correct answer is option (3).

Indefinite Integrals Question 9:

Let f:[0, 1] → R be a continuous function. Suppose

Then value of  is

  1. 0
  2. 1/2
  3. 1
  4. 3/2

Answer (Detailed Solution Below)

Option 2 : 1/2

Indefinite Integrals Question 9 Detailed Solution

Given that,

     ----(1)

We know that,

      ----(2)

      ----(3)

Now, equation (1) can be written as

By substituting equation (2) and (3) in the above equation

Indefinite Integrals Question 10:

 is equal to

Answer (Detailed Solution Below)

Option 1 :

Indefinite Integrals Question 10 Detailed Solution

Hot Links: teen patti rules teen patti baaz teen patti star teen patti master app teen patti jodi