Analysis MCQ Quiz in मल्याळम - Objective Question with Answer for Analysis - സൗജന്യ PDF ഡൗൺലോഡ് ചെയ്യുക

Last updated on Mar 11, 2025

നേടുക Analysis ഉത്തരങ്ങളും വിശദമായ പരിഹാരങ്ങളുമുള്ള മൾട്ടിപ്പിൾ ചോയ്സ് ചോദ്യങ്ങൾ (MCQ ക്വിസ്). ഇവ സൗജന്യമായി ഡൗൺലോഡ് ചെയ്യുക Analysis MCQ ക്വിസ് പിഡിഎഫ്, ബാങ്കിംഗ്, എസ്എസ്‌സി, റെയിൽവേ, യുപിഎസ്‌സി, സ്റ്റേറ്റ് പിഎസ്‌സി തുടങ്ങിയ നിങ്ങളുടെ വരാനിരിക്കുന്ന പരീക്ഷകൾക്കായി തയ്യാറെടുക്കുക

Latest Analysis MCQ Objective Questions

Top Analysis MCQ Objective Questions

Analysis Question 1:

The value of \(\lim_{n \to \infty } n sin (2 \pi e n!)\) is  

  1. 1
  2. π

  3. 2 π 
  4. Does not exist.

Answer (Detailed Solution Below)

Option 3 : 2 π 

Analysis Question 1 Detailed Solution

Explanation -

Let an = n sin(2 π en!) we have 

\(e = \sum_{k=0}^n \frac{1}{k!} + \sum_{k=n+1}^{\infty} \frac{1}{k!} \)

⇒ \(2 \pi e n! = 2\pi r + 2\pi n!( \sum_{k=n+1}^{\infty} \frac{1}{k!} )\)

Where r is positive integer. so we have

\(lim_{ n \to \infty } n sin( 2\pi r + 2\pi n!( \sum_{k=n+1}^{\infty} \frac{1}{k!} ))\)

\(lim_{ n \to \infty } n \ sin( 2\pi n!( \sum_{k=n+1}^{\infty} \frac{1}{k!} ))\)

Further, observe that 

\(\frac{1}{n+1} < ​​n! ( \sum_{k=n+1}^{\infty}\frac{1}{k!}) = \frac{1}{n+1}+ \frac{1}{(n+1)(n+2)}+..... < \frac{1}{n}+ \frac{1}{n^2} + ... = \frac{1}{n-1}\)

By squeeze principle, we have 

\(lim_{n \to \infty }​​n! ( \sum_{k=n+1}^{\infty}\frac{1}{k!}) = lim_{n \to \infty } b_n = 0\) and \(lim_{n \to \infty }n b_n = 1\)

So using the result that \(lim_{x \to 0 } \frac{sinx}{x} = 1\) we get 

\(lim_{n \to \infty } a_n = ​​lim_{n \to \infty } n sin(2 \pi b_n) = ​​lim_{n \to \infty }2 \pi b_n n \frac{sin(2 \pi b_n)}{2 \pi b_n} = 2\pi\)

Hence Option(3) is correct.

Analysis Question 2:

Let f ∈ C1[- π, π ], Define for \(n \in \mathbb{N}\)\(b_n = \int_{-\pi}^{\pi} f(t) sin(nt) dt\),  which of the following is correct? 

  1. b→ 0 as n → ∞ 
  2. nbn → 0 as n → ∞ 
  3. The series \(\sum _{n=1}^{\infty} n^3 b_n^3\) is absolutely convergent.
  4. All the above 

Answer (Detailed Solution Below)

Option 4 : All the above 

Analysis Question 2 Detailed Solution

Concept -

Reimann Lebesgue Lemma -

If the Lebesgue Integral of |f| is finite then the fourier transform of |f| vanishes as its argument does to infinity.

Explanation -

We have the sequence  \(b_n = \int_{-\pi}^{\pi} f(t) sin(nt) dt\)

Note that f(x) being continuous on a compact set is bounded and |sin t | ≤ 1

Therefore  \(|a_n| \le \int_{-\pi}^{\pi} |f(t)|dt \le 2 \pi M\)   ∀ n  where M is bound on f(x).

Thus the sequence {bn} is bounded.

\(b_n = \int_{-\pi}^{\pi} f(t) sin(nt) dt\)

integration by parts, we get 

bn  \([\frac{f(t) cos (nt)}{n}]_{-\pi}^{\pi} - \frac{1}{n} \int_{-\pi}^{\pi} f'(t) cos(nt) dt = - \frac{1}{n} \int_{-\pi}^{\pi} f'(t) cos(nt) dt \)

Since f'(t) is continuous then by Reimann Lebesgue Lemma, which is " If the Lebesgue Integral of |f| is finite then the fourier transform of |f| vanishes as its argument does to infinity. "

Thus in particular, bn and n bn → 0 as n → ∞ 

Hence option (1) and (2) is correct.

For option(iii) -

\(\sum _{n=1}^{\infty} n^3 b_n^3\) is also absolutely convergent because bbeing bounded and and cgs to 0.

Hence the option (3) is correct. 

Hence option(4) is the correct option.

Analysis Question 3:

The series \(\sum{3^n sin(\frac{1}{5^n x})}\) is ______ on the interval [1, ∞ ).

  1. Absolutely convergent
  2. Convergent only
  3. Divergent 
  4. Oscillatory

Answer (Detailed Solution Below)

Option 1 : Absolutely convergent

Analysis Question 3 Detailed Solution

Concept -

(i) ∑ |an | is convergent then ∑ an is absolutely convergent.

(ii) Ratio Test - 

If \(lim_{n \to \infty } \frac{a_{n+1}}{a_n}= p < 1\) then the series  ∑ an is convergent.

Explanation -

We have the series \(∑{3^n sin(\frac{1}{5^n x})}\) 

Now for Absolutely convergent -

\(∑ |{3^n sin(\frac{1}{5^n x})}| \le ∑ \frac{1}{x} \times (\frac{3}{5})^n\)

Now using Ratio Test -

\(lim_{n \to \infty } \frac{a_{n+1}}{a_n}= lim_{n \to \infty } (\frac{3}{5})= \frac{3}{5}< 1\)

Hence the series \(∑ \frac{1}{x} \times (\frac{3}{5})^n\) is convergent and the given series is absolutely convergent.

Hence Option (i) is true.

Analysis Question 4:

If the sequence \(a_n = e^{-n} + (-1)^n cos^3(\frac{19}{e^3})^n+ (-1)^n (sin(\frac{1}{n^2}+ \frac{(-1)^n \pi }{2}))\) then choose the correct option?

  1. largest limit point of the sequence is greater than e
  2. the sequence is converges in (-1, e)
  3. the sequence is not converges in (-1, e)
  4. \(lim_{n \to \infty } \ inf \ a_n = 1\)

Answer (Detailed Solution Below)

Option 3 : the sequence is not converges in (-1, e)

Analysis Question 4 Detailed Solution

Concept -

(i)  If n is even then (-1)n = 1 

(ii)  If n is odd then (-1)n = -1

(iii)  \(\frac{19}{e^3}< 1\) then \((\frac{19}{e^3})^n \to 0 \ \ as \ \ n \to \infty\)

Explanation -

We have the sequence \(a_n = e^{-n} + (-1)^n cos^3(\frac{19}{e^3})^n+ (-1)^n (sin(\frac{1}{n^2}+ \frac{(-1)^n \pi }{2}))\)

Now as n →  ∞ ,

an = 0 + (-1)n cos3(0) + (-1)n\(sin(\frac{(-1)^n\pi}{2})\)

Now we make the cases -

Case - I - If n is even then put (-1)n = 1 in the above equation we get

an = 0 + 1 x cos3(0) + 1 x \(sin(\frac{\pi}{2})\) = 1 + 1 = 2

Case - II - If n is odd then put (-1)n = -1 in the above equation, we get

an = 0 - 1 x cos3(0) - 1 x \(sin(\frac{-\pi}{2})\) = -1 + 1 = 0

Hence largest and smallest limit points are 2 & 0.

So Options (i) & (iv) are wrong.

And we know that limit of the sequence is different in both the cases so not convergent.

Hence option (iii) is correct and (ii) is wrong.

Analysis Question 5:

Let S = {x- x4<=100 where x ∈ R} and T = { x2 - 2x <67 where x ∈ (0, ∞)} then  S∩ T is 

  1. closed but not Bounded 
  2. Bounded but not closed 
  3. closed
  4. None of these

Answer (Detailed Solution Below)

Option 2 : Bounded but not closed 

Analysis Question 5 Detailed Solution

Concept use:

Bounded set : A set S is bounded if it has both upper and lower bounds. 

Closed set: If a set contain each of its limit point in the set 

Calculations:

S = {x- x4<=100 where x ∈ R} is unbounded and Closed 

T = { x2 - 2x <67 where x ∈ (0, ∞)} is Open and bounded

Hence the Intersection of the Closed set and Open Set need not be closed set, but it is bounded also.

So, The Correct option is 2.

Analysis Question 6:

Given that there exists a continuously differentiable function g defined by the equation F(x, y) = x3 + y3 - 3xy - 4 = 0 in a neighborhood of x = 2 such that g(2) = 2.  find its derivative.

  1. g'(x) = = -(x2 – y)/(y2)
  2. g'(x) = = -(x2 – y)/(y2 – 1)
  3. g'(x) = = -(x2 – y)/(y2 – x)
  4. g'(x) = = (x2 – y)/(y2 – x)

Answer (Detailed Solution Below)

Option 3 : g'(x) = = -(x2 – y)/(y2 – x)

Analysis Question 6 Detailed Solution

Solution:

Given function is:

F(x, y) = x3 + y3 – 3xy – 4 = 0

And x = 2 and g(2) = 2

Now,

F(2, 2) = (2)3 + (2)3 – 3(2)(2) – 4

= 8 + 8 – 12 – 4

= 0

So, F(2, 2) = 0

∂F/∂x = ∂/∂x (x3 + y3 – 3xy – 4) = 3x2 – 3y

∂F/∂y = ∂/∂y (x3 + y3 – 3xy – 4) = 3y2 – 3x

Let us calculate the value of ∂F/∂y at (2, 2).

That means, ∂F(2, 2)/∂y = 3(2)2 – 3(2) = 12 – 6 = 6 ≠ 0.

Thus, ∂F/∂y is continuous everywhere.

Hence, by the implicit function theorem, we can say that there exists a unique function g defined in the neighborhood of x = 2 by g(x) = y, where F(x, y) = 0 such that g(2) = 2.

Also, we know that ∂F/∂x is continuous.

Now, by implicit function theorem, we get;

g’(x) = -[∂F(x, y)/∂x]/ [∂F(x, y)/ ∂y]

= -(3x2 – 3y)/(3y2 – 3x)

= -3(x2 – y)/ 3(y2 – x)

= -(x2 – y)/(y2 – x)

Hence, option 3 is correct

Analysis Question 7:

If f(x) is differentiable on interval I and ∃ α > 0, such that |f'(x)| ≤ α on I, then f(x) is

  1. continuous but not uniformly continuous on I
  2. uniformly continuous but not continuous on I
  3. uniformly continuous but not differentiable on I
  4. continuous, uniformly continuous and differentiable on I

Answer (Detailed Solution Below)

Option 4 : continuous, uniformly continuous and differentiable on I

Analysis Question 7 Detailed Solution

Concept:

Lagrange's mean value theorem:  Let f(x) be a continuous function in [a, b] and differentiable in (a, b) then there exist a point c ∈ (a, b) such that 

 \(f'(c)= \frac{f(b)-f(a)}{b-a}\)

Explanation:

For x, y ∈ I, by Lagrange's mean value theorem

\(\frac{f(x) - f(y)}{x - y} = f'(c)\) where x < c < y

⇒ f(x) - f(y) = (x - y)f'(c)

⇒ |f(x) - f(y)| = |x - y||f'(c)|

For a given ε > 0 ∃, \(δ = \frac{ε}{\alpha} > 0\) such that

 |f(x) - f(y)| < ε, ∀ |x - y| < δ, x, y ∈ I

Hence, f(x) is uniformly continuous on I.

We know that every uniformly continuous function is also continuous.

Given f(x) is differentiable.

Hence option (4) is true

Analysis Question 8:

Which of the following function is not differentiable at x = 0?

  1. f(x) = sin( |x|x )
  2. \(f(x) =\begin{cases} sin(x^2) & if \ \ x\in \mathbb{Q} \\ 0 & otherwise\\ \end{cases}\)
  3. \(f(x) =\begin{cases} sin(|x|) & if \ \ x\in \mathbb{Q} \\ 0 & otherwise\\ \end{cases}\)
  4. f(x) = [x] sin2(πx) where [.] is greatest integer function

Answer (Detailed Solution Below)

Option 3 : \(f(x) =\begin{cases} sin(|x|) & if \ \ x\in \mathbb{Q} \\ 0 & otherwise\\ \end{cases}\)

Analysis Question 8 Detailed Solution

Concept -

(i) Differentiability -

Let f(x) be a real-valued function defined on an interval [a,b], i.e. f : [a,b] → \(\mathbb{R}\), let a < c < b

If left-hand derivative of f(x) at c is equal to right-hand derivative of f(x) at c then f(x) is differentiable at c. where LHD = \(lim_{x → c^-} \frac{f(x) -f(c)}{x-c} \) and RHD = \(lim_{x → c^+} \frac{f(x) -f(c)}{x-c} \)

(ii) \(sin(x) = x - \frac{x^3}{3!}+ \frac{x^5}{5!}+....\)

(iii) \( lim_{x → 0} \frac{sin x^2}{x} = lim_{x → 0} \frac{x^2-\frac{x^6}{3!}+...}{x}=0\)  

Explanation -

For option (1) -

We have f(x) = sin( |x|x )

Now use the definition of differentiability - 

\(lim_{x → 0} \frac{f(x) -f(0)}{x-0} =\begin{cases} lim_{x → 0} \frac{-sin x^2}{x} & x< 0 \\ lim_{x → 0} \frac{sin x^2}{x} &x>0 \\ 0 & x = 0 \end{cases}\)

⇒ \(lim_{x → 0} \frac{f(x) -f(0)}{x-0} = 0\) as \( lim_{x → 0} \frac{sin x^2}{x} = lim_{x → 0} \frac{x^2-\frac{x^6}{3!}+...}{x}=0\)

Hence the function is differentiable at x = 0. So option (1) is true.

For option (2) -

We have \(f(x) =\begin{cases} sin(x^2) & if \ \ x\in \mathbb{Q} \\ 0 & otherwise\\ \end{cases}\)

Now use the definition of differentiability - 

\(lim_{x → 0} \frac{f(x) -f(0)}{x-0} =\begin{cases} lim_{x → 0} \frac{sin x^2}{x} & x \in \mathbb{Q} \\ 0 & otherwise \end{cases}\)

⇒ \(lim_{x → 0} \frac{f(x) -f(0)}{x-0} = 0\) as \( lim_{x → 0} \frac{sin x^2}{x} = lim_{x → 0} \frac{x^2-\frac{x^6}{3!}+...}{x}=0\)

Hence the function is differentiable at x = 0. So option (2) is true.

For option (3) -

We have \(f(x) =\begin{cases} sin(|x|) & if \ \ x\in \mathbb{Q} \\ 0 & otherwise\\ \end{cases}\)

Now use the definition of differentiability - 

\(lim_{x → 0} \frac{f(x) -f(0)}{x-0} =\begin{cases} lim_{x → 0} \frac{-sin x}{x} & x \in \mathbb{Q}, x< 0 \\ lim_{x → 0} \frac{sin x}{x} & x \in \mathbb{Q},x>0 \\ 0 & otherwise \end{cases}\)

⇒ \(lim_{x → 0^-} \frac{f(x) -f(0)}{x-0} = -1 \) and \(lim_{x → 0^+} \frac{f(x) -f(0)}{x-0} = 1 \) as \( lim_{x → 0} \frac{sin x}{x} = lim_{x → 0} \frac{x-\frac{x^3}{3!}+...}{x}=1\)

Hence the function is not differentiable at x = 0. So option (3) is false.

For option (4) -

We have f(x) = [x] sin2(πx) = \(\begin{cases} -sin^2 \pi x & 1 \le x < 0 \\ 0 & 0\leq x\leq 1 \\ \end{cases}\)

Now use the definition of differentiability - 

⇒ \(LHD =lim_{x → 0^-} \frac{f(x) -f(0)}{x-0} = lim_{x → 0^-} \frac{-sin^2 \pi x}{x} = 0\) and \(RHD =lim_{x → 0^+} \frac{f(x) -f(0)}{x-0} = lim_{x → 0^-} \frac{0}{x} = 0\) 

Hence the function is differentiable at x = 0. So option (4) is true.

Therefore option(3) is correct option.

Analysis Question 9:

The least positive value of K > 0 such that |sin2 x - sin2y| ≤ K |x - y| for all real number x and y, is 

  1. 0
  2. 1/2
  3. 1
  4. 1/4

Answer (Detailed Solution Below)

Option 3 : 1

Analysis Question 9 Detailed Solution

Concept -

Mean Value Theorem -

If f(x) is differentiable then \(\frac{|f(x) -f(y)|}{|x-y|} \le sup|f'(t)|\)   

Explanation -

We have |sin2 x - sin2y| ≤ K |x - y|

⇒ \(\frac{|sin^2x-sin^2y|}{|x-y|} \le K\)

Now use Mean Value Theorem, we get -

⇒  K = sup |f'(t)| where f(t) = sin2(t)

⇒  f'(t) = 2 sin(t) cos(t) = sin(2t)

⇒  K = sup |sin(2t)| = 1 

Hence option(3) is correct.

Analysis Question 10:

Let A = f(B) ⊂ R where B is closed interval in (o, ∞) and f(t) = sin(t) then A is

  1. Not closed
  2. Not dense in R
  3. Not Connected
  4. Not compact

Answer (Detailed Solution Below)

Option 2 : Not dense in R

Analysis Question 10 Detailed Solution

Concept -

(i) Image of an interval under continuity is an interval.

(ii)  Image of compact set under continuity is compact.

(iii) Every interval in connected set.

Explanation -

We have B is closed interval in (o, ∞) and f(t) = sin(t) 

So clearly f(t) is a continuous function.

And B is a closed interval in (o, ∞) implies B is compact set because of boundedness.

We know that image of compact set under continuity is compact.

Hence A is compact set ⇒ closed set.

So option(1) and (4) are false.

we know that image of an interval under continuity is interval. Hence A is connected.

So option (3) is false.

Now the closure of \(\bar{A} = A \neq R\)  

Hence A is not dence in R.

Hence option(2) is true.

Get Free Access Now
Hot Links: teen patti game online teen patti download apk teen patti tiger teen patti sweet