Scalar or Dot Product MCQ Quiz - Objective Question with Answer for Scalar or Dot Product - Download Free PDF

Last updated on Jun 30, 2025

Latest Scalar or Dot Product MCQ Objective Questions

Scalar or Dot Product Question 1:

A line makes angles α, β and γ with the positive directions of the coordinate axes. If , then what is equal to?

  1. -2
  2. -1
  3. 1
  4. 2

Answer (Detailed Solution Below)

Option 4 : 2

Scalar or Dot Product Question 1 Detailed Solution

Calculation:

Given,

Using the identity , we substitute:

Simplifying the equation:

Rearrange to isolate the sine terms:

Now, calculate the dot product:

∴ The value of is 2.

Hence, the correct answer is Option 4.

Scalar or Dot Product Question 2:

The vector  is rotated through a right angle, passing through the y-axis in its way and the resulting vector is . Then the projection of  on  is

  1. 3√2
  2. 1
  3. √6
  4. 2√3

Answer (Detailed Solution Below)

Option 1 : 3√2

Scalar or Dot Product Question 2 Detailed Solution

Calculation: 

⇒ 

⇒ 

⇒ 

⇒ 

Hence, the correct answer is Option 1.

Scalar or Dot Product Question 3:

Let θ be the angle between two unit vectors  is perpendicular to  then what is cos θ + cos 2θ equal to?

  1. 0
  2. 1/2
  3. 1

Answer (Detailed Solution Below)

Option 1 : 0

Scalar or Dot Product Question 3 Detailed Solution

Explanation:

Given:

 and  are perpendicular vectors.

⇒  = 0

⇒ 

⇒ 

Now  are unit vectors

⇒ 

⇒ 1.1 cosθ =1/2

Cosθ = 1/2 

Now

cos2 θ = Cos2θ -1

= 2× 1/4 -1

Now, 

cosθ + cos2θ = 1/2 -1/2 =0

∴The Correct answer is Option a

Scalar or Dot Product Question 4:

If , then which one of the following is correct?

  1.  is parallel to 
  2.  is perpendicular to 
  3. is a unit vector.
  4.  is unit vector.

Answer (Detailed Solution Below)

Option 3 :  is perpendicular to 

Scalar or Dot Product Question 4 Detailed Solution

Concept:

Vector a is perpendicular to b if 

Calculation:

Squaring both sides,

Now we have,

∴  Vector a is perpendicular to b

Hence, option (3) is correct.

Scalar or Dot Product Question 5:

For the vectors  ________.

  1. 11
  2. -11
  3. 5
  4. -5

Answer (Detailed Solution Below)

Option 2 : -11

Scalar or Dot Product Question 5 Detailed Solution

Calculation

Given: and  

 

⇒ 

⇒ .

Hence option 2 is correct.

Top Scalar or Dot Product MCQ Objective Questions

If , are unit vectors and  then the value of of  is :

  1. -3/2
  2. 0
  3. 2/3
  4. 1

Answer (Detailed Solution Below)

Option 1 : -3/2

Scalar or Dot Product Question 6 Detailed Solution

Download Solution PDF

Concept:

Dot Product: it is also called the inner product or scalar product

Let the two vectors are  and 

Dot Product of two vectors is given by:   = |a||b| cos θ

Where || = Magnitudes of vectors a, || = Magnitudes of vectors b and θ is the angle between a and b

Formulas of Dot Product:

 

Calculation:

Given that,

(â + b̂ + ĉ) = 0    ----(1)

We know that,

(a + b + c)2 = a2 + b2 + c2 + 2ab + 2bc + 2ca

⇒ (â + b̂ + ĉ)2 = â ⋅ â + b̂ ⋅ b̂ + ĉ ⋅ ĉ + 2(â ⋅ b̂ + b̂ ⋅ ĉ + ĉ ⋅ â) 

From equation (1), we get

⇒ (1 + 1 + 1) + 2 (â ⋅ b̂ + b̂ ⋅ ĉ + ĉ ⋅ â) = 0

∴ (â ⋅ b̂ + b̂ ⋅ ĉ + ĉ ⋅ â) = - 3/2        

If  and  are mutually perpendicular unit vectors, then 

  1. 5
  2. 3
  3. 6
  4. 12

Answer (Detailed Solution Below)

Option 2 : 3

Scalar or Dot Product Question 7 Detailed Solution

Download Solution PDF

Concept:

If   and  are mutually perpendicular unit vectors 

,  

 

Calculations:

Consider, 

Given   and  are mutually perpendicular unit vectors.

So,  

And    and  are unit vectors

So, 

= 15 - 12 

= 3

The sum of two vectors and  is a vector  such that . Then, the magnitude of  is equal to:

  1. 2
  2. 0

Answer (Detailed Solution Below)

Option 1 :

Scalar or Dot Product Question 8 Detailed Solution

Download Solution PDF

Concept:

Dot Product of two vectors  and  is defined as , where  is the magnitude of vector .

.

Calculation:

We are given that "sum of two vectors  and  is a vector ".

⇒ 

Taking dot product of both sides with themselves, the magnitudes will still be equal:

⇒ 

⇒ 

Since , we get:

⇒ 

⇒ 

⇒ 

Now, 

= 4 + 4 - (-4)

= 12

⇒ .

Find the angle between the vectors

Answer (Detailed Solution Below)

Option 3 :

Scalar or Dot Product Question 9 Detailed Solution

Download Solution PDF

Concept:

If  are two vectors then 

Note: If vectors  are perpendicular to each other then 

Calculation:

Given: 

Let θ be the angle between the vector 

⇒ 

We know that, 

⇒ 

⇒ 1 = 3 cos θ 

⇒  

⇒ 

Hence, option 3 is correct.

Find  if  and  is a unit vector ?

  1. 3
  2. None of these

Answer (Detailed Solution Below)

Option 2 :

Scalar or Dot Product Question 10 Detailed Solution

Download Solution PDF

CONCEPT:

  • If  is a unit vector then 

CALCULATION:

Given:  and  is a unit vector

⇒ 

As we know that, 

⇒ 

As we know that, if  is a unit vector then 

⇒ 

Hence, correct option is 2.

If  are vectors such that  and  then possible value of  is

  1. 0
  2. 3
  3. 4
  4. 8

Answer (Detailed Solution Below)

Option 3 : 4

Scalar or Dot Product Question 11 Detailed Solution

Download Solution PDF

Concept:

  • The cross product of vector to itself = 0
  • The cross product of collinear vectors = 0
  • The dot product of collinear vectors = Product of their Magnitudes
  • For dot product 
  • For cross product  
  • The unit vector in the direction of a  
  • A vector in direction of  = (Magnitude of ) ×

 

Calculation:

Given:

⇒ 

⇒ 

⇒ 

It means the  and  are collinear vectors.

∴  

⇒  

⇒ \(\boldsymbol{\rm\vec a + \vec b = 2\hat i + 3\hat j + 4\hat k}\)

⇒  

⇒  

⇒ 

Value of    will be equal to

  1. 0
  2. |a|2
  3. 2|a|2
  4. 3|a|2

Answer (Detailed Solution Below)

Option 2 : |a|2

Scalar or Dot Product Question 12 Detailed Solution

Download Solution PDF

Concept:

Dot Product: it is also called the inner product or scalar product

Let the two vectors are  and 

Dot Product of two vectors is given by:   = |a||b| cos θ

Where || = Magnitudes of vectors a, || = Magnitudes of vectors b and θ is the angle between a and b

Formulas of Dot Product:

 

Calculation:

Let 

Similarly, 

Therefore 

= xî + yĵ + zk̂ 

Hence, required value of

 

= (xî + yĵ + zk̂ ).(xî + yĵ + zk̂ )

= x2 + y2 + z2 = |a|2

Find the projection of the vector  on the vector  ?

  1. None of these

Answer (Detailed Solution Below)

Option 3 :

Scalar or Dot Product Question 13 Detailed Solution

Download Solution PDF

CONCEPT:

  • Projection of a vector  on other vector  is given by: 

CALCULATION:

Given:  and 

Here, we have to find the projection of a vector  on other vector  is given by: 

⇒ 

⇒ 

Hence, option 3 is correct.

If  are two vectors such that  then which one of the following is correct?

  1.  must be unit vectors.
  2.  must be parallel to 
  3.  must be perpendicular to 
  4.  must be equal to 

Answer (Detailed Solution Below)

Option 3 :  must be perpendicular to 

Scalar or Dot Product Question 14 Detailed Solution

Download Solution PDF

CONCEPT:

The scalar product of two vectors is given by 

If the vectors  are perpendicular then 

CALCULATION:

Given:  are two vectors such that 

⇒ 

⇒ 

⇒ 

∵ 

⇒ 

⇒ 

⇒ 

So,  must be perpendicular to 

Hence, correct option is 3.

If  is perpendicular to  and magnitude of  is twice that of , then what is the value of  equal to?

  1. 0
  2. 1

Answer (Detailed Solution Below)

Option 1 : 0

Scalar or Dot Product Question 15 Detailed Solution

Download Solution PDF

Concept:

If  is perpendicular to , then 

. = 0

Calculation:

 +  = 0

Given: 

So, we can write

 +   = 0

 = -       -----(1)

To find: 

 = 4 +       ----(2)

From equations (1) & (2) we can write,

 = -​ +  = 0​​

∴ The value of  equal to 0.

Hot Links: teen patti gold apk download teen patti vungo teen patti real cash game teen patti customer care number