Multiple Angle MCQ Quiz - Objective Question with Answer for Multiple Angle - Download Free PDF

Last updated on May 23, 2025

Latest Multiple Angle MCQ Objective Questions

Multiple Angle Question 1:

If A = 15°, then what is the value of 112cos3A+10sin2A73sin4A?

  1. 117
  2. 2132
  3. 3221
  4. 217

Answer (Detailed Solution Below)

Option 3 : 3221

Multiple Angle Question 1 Detailed Solution

Given:

A = 15°

Expression = (11√2 cos(3A) + 10 sin(2A)) / (7√3 sin(4A))

Formula used:

Use trigonometric values for cos(3A), sin(2A), and sin(4A) at A = 15°

Calculations:

Substitute A = 15° into the expression:

cos(3A) = cos(45°) = 1 / √2

sin(2A) = sin(30°) = 1/2

sin(4A) = sin(60°) = √3 / 2

Substitute these values into the expression:

(11√2 × (1 / √2) + 10 × (1/2)) / (7√3 × (√3 / 2))

⇒ (11 × 1 + 5) / (7 × 3 / 2)

⇒ (16) / (21 / 2)

⇒ (16 × 2) / 21

⇒ 32 / 21

The value of the expression is 32/21.

Multiple Angle Question 2:

If 4tanθ - 3 = 0, then the value of 1cos2θ1+cos2θ is:

  1. 1
  2. 715
  3. 43
  4. 916

Answer (Detailed Solution Below)

Option 4 : 916

Multiple Angle Question 2 Detailed Solution

Given:

If 4tanθ - 3 = 0, then the value of (1 - cos2θ)/(1 + cos2θ) is:

Formula used:

4tanθ - 3 = 0

tanθ = 3/4

We know, tan²θ = (1 - cos2θ) / (1 + cos2θ)

Calculation:

4tanθ - 3 = 0

⇒ 4tanθ = 3

⇒ tanθ = 3/4

We know, tan²θ = (1 - cos2θ) / (1 + cos2θ)

⇒ tan²θ = (3/4)²

⇒ (1 - cos2θ) / (1 + cos2θ) = 9/16

∴ The correct answer is option (4).

Multiple Angle Question 3:

The value of the e×pression 1sin(2t)1+sin(2t)×cos(t)+sin(t)cos(t)sin(t) is

  1. 12tan(t)1+2tan(t)
  2. 1tan(t)1+tan(t)
  3. 1+2tan(t)12tan(t)
  4. 1+tan(t)1tan(t)

Answer (Detailed Solution Below)

Option 2 : 1tan(t)1+tan(t)

Multiple Angle Question 3 Detailed Solution

Given:

1sin(2t)1+sin(2t)×cos(t)+sin(t)cos(t)sin(t)

Formula used:

sin 2t = 2 sint cost, 

cos 2t = 1 - 2 sin2

Calculation:

1sin(2t)1+sin(2t)×cos(t)+sin(t)cos(t)sin(t)

Multiplying by the second term:

cos(t)+sin(t)sin(2t)[cos(t)+sin(t)]cos(t)sin(t)+sin(2t)[cos(t)sin(t)]

Applying formula: sin 2t = 2 sint cost

cos(t)+sin(t)2sin(t)cos2(t)2sin2(t)cos(t)]cos(t)sin(t)+2sin(t)cos2(t)2sin2(t)cos(t)]

cos(t)[12sin2(t)]sin(t)[2cos2(t)1]cos(t)[12sin2(t)]+sin(t)[2cos2(t)1]]

cos(t).cos(2t)sin(t).cos(2t)cos(t).cos(2t)+sin(t).cos(2t)

Taking cos(2t) common and cancel out in numerator and denominator:

cos(t)sin(t)cos(t)+sin(t)

Dividing by cos(t) :

1tan(t)1+tan(t)

Option 2 is the correct answer.

Multiple Angle Question 4:

If tan 4θ × tan 6θ = 1, where 6θ is an acute angle, then find the value of cot 5θ.

  1. 3
  2. 3
  3. -1
  4. 1

Answer (Detailed Solution Below)

Option 4 : 1

Multiple Angle Question 4 Detailed Solution

Given:

If tan 4θ × tan 6θ = 1, where 6θ is an acute angle, we need to find the value of cot 5θ.

Concepts Used:

If tan(A) × tan(B) = 1, then A + B = 90° (angles are complementary).

cot(θ) = 1/tan(θ).

Solution:

Use the given condition:

tan 4θ × tan 6θ = 1

This implies:

4θ + 6θ = 90°

10θ = 90°

θ = 9°

Find cot 5θ:

cot 5θ = cot(5 × 9°)

cot 5θ = cot 45°

We know that cot 45° = 1.

The value of cot 5θ = 1.

Multiple Angle Question 5:

Find the value of 1sin3θ1+sin3θ

  1. sec 3θ - tan 3θ
  2. (sec 3θ - tan 3θ)3
  3. (sec 3θ - tan 3θ)2
  4. sec 3θ + tan 3θ

Answer (Detailed Solution Below)

Option 1 : sec 3θ - tan 3θ

Multiple Angle Question 5 Detailed Solution

Calculation:

1sin3θ1+sin3θ

⇒ By putting θ = 15° 

1sin3θ1+sin3θ

⇒ 1sin451+sin45

⇒ 1 (1/2)1+ (1/2) = 2  12 + 1

⇒ 2  12 + 1×2  12  1

⇒ (2  1)221

⇒ (2  1)2

⇒ √2 - 1

Again, In option 1  By putting θ = 15° we get,

sec 3θ - tan 3θ = sec 45° - tan 45°

⇒ √2 - 1

∴ The correct option is 1

Alternate Method

1sin3θ1+sin3θ

⇒ 1sin3θ1+sin3θ×1sin3θ1sin3θ

⇒ (1sin3θ)212sin23θ

⇒ (1sin3θ)2cos23θ

⇒ (1sin3θcos3θ)2

⇒ 1sin3θcos3θ

⇒ 1cos3θsin3θcos3θ

⇒ sec 3θ - tan 3θ

∴ The correct option is 1

Top Multiple Angle MCQ Objective Questions

Simplify the following:

sin 2x + 2 sin 4x + sin 6x 

  1. 4 cos2x sin 4x
  2. 4 cos2x sin x
  3. 2 cos2x sin 4x
  4. 4 sin2​x sin 4x

Answer (Detailed Solution Below)

Option 1 : 4 cos2x sin 4x

Multiple Angle Question 6 Detailed Solution

Download Solution PDF

Given:

sin 2x + 2 sin 4x + sin 6x 

Formula used:

sin C + sin D = 2 × sin (C + D)/2 × cos (C - D)/2

cos 2θ = (2 × cos 2 θ  - 1)

Calculation:

sin 6x + sin 2x + 2 sin 4x

⇒ 2 × sin (6x + 2x)/2 × cos (6x - 2x)/2 + 2 sin 4x

⇒ 2 × sin 4x × cos 2x + 2 sin 4x

⇒ 2 × sin 4x (cos 2x + 1)

⇒ 2 × sin 4x {(2 × cos2x - 1) + 1) }

⇒ (2 × sin 4x) × (2 × cos2 x) 

⇒ 4 cos2 x  sin 4x

∴ The correct answer is 4 cos2 x  sin 4x.

Find the value of 1sin3θ1+sin3θ

  1. sec 3θ - tan 3θ
  2. (sec 3θ - tan 3θ)3
  3. (sec 3θ - tan 3θ)2
  4. sec 3θ + tan 3θ

Answer (Detailed Solution Below)

Option 1 : sec 3θ - tan 3θ

Multiple Angle Question 7 Detailed Solution

Download Solution PDF

Calculation:

1sin3θ1+sin3θ

⇒ By putting θ = 15° 

1sin3θ1+sin3θ

⇒ 1sin451+sin45

⇒ 1 (1/2)1+ (1/2) = 2  12 + 1

⇒ 2  12 + 1×2  12  1

⇒ (2  1)221

⇒ (2  1)2

⇒ √2 - 1

Again, In option 1  By putting θ = 15° we get,

sec 3θ - tan 3θ = sec 45° - tan 45°

⇒ √2 - 1

∴ The correct option is 1

Alternate Method

1sin3θ1+sin3θ

⇒ 1sin3θ1+sin3θ×1sin3θ1sin3θ

⇒ (1sin3θ)212sin23θ

⇒ (1sin3θ)2cos23θ

⇒ (1sin3θcos3θ)2

⇒ 1sin3θcos3θ

⇒ 1cos3θsin3θcos3θ

⇒ sec 3θ - tan 3θ

∴ The correct option is 1

If tanA2=x, then find x.

  1. 1+cosA1cosA
  2. 1sinA1+cosA
  3. 1cosA1+cosA
  4. cosA11+cosA

Answer (Detailed Solution Below)

Option 3 : 1cosA1+cosA

Multiple Angle Question 8 Detailed Solution

Download Solution PDF

Given:

tan (A/2) = x

Formula used:

tan (A/2) = ± 1cosA1+cosA

Calculation:

tan (A/2) = x

⇒ 1cosA1+cosA = x

⇒ x = 1cosA1+cosA

∴ The correct option is 3.
Alternate Method 

We know: tan(A/2) = sin(A/2) / cos(A/2).
 
Sin(A/2) can be derived by the Pythagorean Identity, sin²λ + cos²λ = 1, which means sinλ = √(1 - cos²λ). So, sin(A/2) = √(1 - cos²(A/2)).
 
Putting this into the equation, we get
 
tan(A/2) = √(1 - cos²(A/2)) / cos(A/2)  .......(i)
 
Now, from half angle formula, 
 
cos(A/2) = √((1 + cosA) / 2)  .......(ii)
 
value of (ii) put in equation (i):-
 
tan(A/2) = √[1 - √{(1 + cosA)²/ 4}] / √((1 + cosA) / 2)
 

tan(A/2) = √[1 - {(1 + cosA)/ 2}] / √((1 + cosA) / 2)

tan(A/2) = √((2 - 1 - cosA)/ 2) / √((1 + cosA) / 2)

tan(A/2) = √((1 - cosA)/ 2) / √((1 + cosA) / 2)

tan(A/2) = ±√(1 - cosA) / √(1 + cosA).
 
So, option 3 is the correct answer.

If tan3θ⋅tan7θ = 1, where 7θ is an acute angle, then find the value of cot15θ.

  1. 1
  2. -1
  3. 3
  4. 3

Answer (Detailed Solution Below)

Option 2 : -1

Multiple Angle Question 9 Detailed Solution

Download Solution PDF

Given:

tan3θ⋅tan7θ = 1

Concept used:

image

Calculation:

tan3θ⋅tan7θ = 1

⇒  tan3θ = 1/tan7θ

⇒  tan3θ = cot7θ

⇒  tan3θ = tan(90° - 7θ)

⇒ 3θ = 90° - 7θ

⇒ 10θ = 90°

⇒ θ = 9°

So, cot15θ = cot135° = - tan45°

⇒ - 1

∴ The required answer is - 1.

If sec 2θ = cosec (θ – 36°), where 2θ is an acute angle, find the value of θ.

  1. 32° 
  2. 46°
  3. 20°
  4. 42°

Answer (Detailed Solution Below)

Option 4 : 42°

Multiple Angle Question 10 Detailed Solution

Download Solution PDF

Given:

sec 2θ = cosec (θ – 36°)

Concept used:

image

Calculation:

sec 2θ = cosec (θ – 36°)

⇒ sec 2θ = sec (90° – θ + 36°)

⇒ sec 2θ = sec (126° – θ)

⇒ 2θ = 126° – θ

⇒ 3θ = 126°

θ = 42°

∴ The required answer is 42°.

If sin Y = x, then what will be the value of cos 2Y (where 0 ≤ Y ≤ 90°)?

  1. (√2 - 1)x
  2. √2x
  3. 1 - 2x
  4. 1 - 2x2

Answer (Detailed Solution Below)

Option 4 : 1 - 2x2

Multiple Angle Question 11 Detailed Solution

Download Solution PDF

Given:

sin Y = x

Formula used:

cos 2Y = 1 - 2sin2 Y

Calculations:

According to the question,

⇒ cos 2Y = 1 - 2sin2 Y

⇒ cos 2Y = 1 - 2(sin Y)2

⇒ cos 2Y = 1 - 2(x)2

∴ The value of cos 2Y is 1 - 2(x)2.

If cot A = 15 / 8, then what will be the value of tan 2 A?

  1. 200/161
  2. 240/161
  3. 240/173
  4. 220/171

Answer (Detailed Solution Below)

Option 2 : 240/161

Multiple Angle Question 12 Detailed Solution

Download Solution PDF

Given:

cot A = 15/8

Concept used:

1. tan 2α = 2×tanα(1tan2α)

2. tan α = 1/cot α 

Calculation:

cot A = 15/8

⇒ tan A = 8/15

Now, tan 2 A

⇒ 2×tanA(1tan2A)

⇒ 2×815(1(815)2)

⇒ 1615161225

⇒ 16×22515×161

⇒ 240/161

∴ The value of tan 2A is 240/161.

Find the value of tan 3θ if sec 3θ = cosec (4θ - 15°).

  1. 13
  2. 3
  3. –1
  4. 1

Answer (Detailed Solution Below)

Option 4 : 1

Multiple Angle Question 13 Detailed Solution

Download Solution PDF

Given:

sec 3θ = cosec (4θ - 15°)

Calculations:

According to question,

sec 3θ = cosec (4θ - 15)

⇒ cosec (90° - 3θ) = cosec (4θ – 15°)

⇒ 90° - 3θ = 4θ - 15°

⇒ 7θ = 90° + 15°

⇒ θ = 105°/7 = 15°

so, tan3θ

= tan(3 × 15°)

= tan45°

= 1

Hence, The Required value is 1.

Multiple Angle Question 14:

Evaluate the following:

2+2+2+2cos8θ

  1. 2cos θ
  2. 2cos 2θ
  3. sin 2θ
  4. cos 2θ

Answer (Detailed Solution Below)

Option 1 : 2cos θ

Multiple Angle Question 14 Detailed Solution

Given:

The expression = 2+2+2+2cos8θ

Formula used:

1 + cosθ = 2cos2(θ/2)

Calculation:

According to the question

⇒ 2+2+2+2cos8θ

⇒ 2+2+2(1+cos8θ)

⇒ 2+2+2(2cos24θ)

⇒ 2+2+2cos4θ

⇒ 2+2(1+cos4θ)

⇒ 2+2(2cos22θ)

⇒ 2+2cos2θ

⇒ 2 (1+cos2θ)

⇒ 2 (2cos2θ)

⇒ 2cosθ 

∴ The required result will be 2cosθ. 

Multiple Angle Question 15:

Simplify the following:

sin 2x + 2 sin 4x + sin 6x 

  1. 4 cos2x sin 4x
  2. 4 cos2x sin x
  3. 2 cos2x sin 4x
  4. 4 sin2​x sin 4x

Answer (Detailed Solution Below)

Option 1 : 4 cos2x sin 4x

Multiple Angle Question 15 Detailed Solution

Given:

sin 2x + 2 sin 4x + sin 6x 

Formula used:

sin C + sin D = 2 × sin (C + D)/2 × cos (C - D)/2

cos 2θ = (2 × cos 2 θ  - 1)

Calculation:

sin 6x + sin 2x + 2 sin 4x

⇒ 2 × sin (6x + 2x)/2 × cos (6x - 2x)/2 + 2 sin 4x

⇒ 2 × sin 4x × cos 2x + 2 sin 4x

⇒ 2 × sin 4x (cos 2x + 1)

⇒ 2 × sin 4x {(2 × cos2x - 1) + 1) }

⇒ (2 × sin 4x) × (2 × cos2 x) 

⇒ 4 cos2 x  sin 4x

∴ The correct answer is 4 cos2 x  sin 4x.

Get Free Access Now
Hot Links: teen patti master 2024 teen patti chart teen patti gold download