Maximum and Minimum value of equation MCQ Quiz - Objective Question with Answer for Maximum and Minimum value of equation - Download Free PDF

Last updated on Apr 24, 2025

Latest Maximum and Minimum value of equation MCQ Objective Questions

Maximum and Minimum value of equation Question 1:

Find the value of x for which the expression 2 - 3x - 4x2 has the greatest value.

  1. 4116
  2. 38
  3. 38
  4. 4116

Answer (Detailed Solution Below)

Option 3 : 38

Maximum and Minimum value of equation Question 1 Detailed Solution

Given:

2 - 3x - 4x2

Concept used:

A function reaches its maximum value when its first-order derivative is zero.

Calculation:

Let, f(x) = 2 - 3x - 4x2

Performing the first-order derivative of f(x) we get,

f'(x) = 0 - 3 - (4 × 2x)

⇒ f'(x) = - 3 - 8x

For the greatest value, f'(x) = 0

So, f'(x) = - 3 - 8x

⇒ 0 = - 3 - 8x

⇒ -8x = 3

⇒ x = -3/8

⇒ x = 38

∴ The value of x for which the expression 2 - 3x - 4x2 has the greatest value is 38.

Maximum and Minimum value of equation Question 2:

The integer 'k', for which the inequality x2 - 2(3k - 1)x + 8k2 - 7 > 0 is valid for every x in R, is :

  1. 2
  2. 3
  3. 4
  4. 0

Answer (Detailed Solution Below)

Option 2 : 3

Maximum and Minimum value of equation Question 2 Detailed Solution

D < 0

(2(3k - 1))2 - 4(8k2 - 7) < 0

4(9k2 - 6k + 1) - 4(8k2 - 7) < 0

k2 - 6k + 8 < 0

(k - 4) (k - 2) < 0

2 < k < 4

then k = 3

Top Maximum and Minimum value of equation MCQ Objective Questions

Maximum and Minimum value of equation Question 3:

Find the value of x for which the expression 2 - 3x - 4x2 has the greatest value.

  1. 4116
  2. 38
  3. 38
  4. 4116

Answer (Detailed Solution Below)

Option 3 : 38

Maximum and Minimum value of equation Question 3 Detailed Solution

Given:

2 - 3x - 4x2

Concept used:

A function reaches its maximum value when its first-order derivative is zero.

Calculation:

Let, f(x) = 2 - 3x - 4x2

Performing the first-order derivative of f(x) we get,

f'(x) = 0 - 3 - (4 × 2x)

⇒ f'(x) = - 3 - 8x

For the greatest value, f'(x) = 0

So, f'(x) = - 3 - 8x

⇒ 0 = - 3 - 8x

⇒ -8x = 3

⇒ x = -3/8

⇒ x = 38

∴ The value of x for which the expression 2 - 3x - 4x2 has the greatest value is 38.

Maximum and Minimum value of equation Question 4:

The integer 'k', for which the inequality x2 - 2(3k - 1)x + 8k2 - 7 > 0 is valid for every x in R, is :

  1. 2
  2. 3
  3. 4
  4. 0

Answer (Detailed Solution Below)

Option 2 : 3

Maximum and Minimum value of equation Question 4 Detailed Solution

D < 0

(2(3k - 1))2 - 4(8k2 - 7) < 0

4(9k2 - 6k + 1) - 4(8k2 - 7) < 0

k2 - 6k + 8 < 0

(k - 4) (k - 2) < 0

2 < k < 4

then k = 3

Maximum and Minimum value of equation Question 5:

Find the value of x for which the expression 2 - 3x - 4x2 has the greatest value.

  1. 4116
  2. 38
  3. 38
  4. 4116
  5. None of the above/More than one of the above.

Answer (Detailed Solution Below)

Option 3 : 38

Maximum and Minimum value of equation Question 5 Detailed Solution

Given:

2 - 3x - 4x2

Concept used:

A function reaches its maximum value when its first-order derivative is zero.

Calculation:

Let, f(x) = 2 - 3x - 4x2

Performing the first-order derivative of f(x) we get,

f'(x) = 0 - 3 - (4 × 2x)

⇒ f'(x) = - 3 - 8x

For the greatest value, f'(x) = 0

So, f'(x) = - 3 - 8x

⇒ 0 = - 3 - 8x

⇒ -8x = 3

⇒ x = -3/8

⇒ x = 38

∴ The value of x for which the expression 2 - 3x - 4x2 has the greatest value is 38.

Maximum and Minimum value of equation Question 6:

The value of 3+14+13+14+13+........ is equal to?

  1. 1.5 + 3
  2. 2 + 3
  3. 3 + 23
  4. 4 + 3

Answer (Detailed Solution Below)

Option 1 : 1.5 + 3

Maximum and Minimum value of equation Question 6 Detailed Solution

Concept:

By using quadratic formula, the roots of the quadratic equation of the form ax2 + bx + c = 0, a ≠ 0 are given by,

x=b±b24ac2a

Explanation:

Let, y = 3+14+13+14+13+........

⇒ y =  3+14+1y

⇒ y ( 4+1y)  = 3 (4+1y) + 1

⇒ 4y + 1 = 12 + 3y  + 1

⇒ 4y = 12 + 3y

⇒ 4y2 = 12y + 3 

⇒ 4y2 - 12y - 3 = 0

 Using quadratic formula, 

y = (12)±(12)24×4×(3)2×4

⇒ y =  12±1928

⇒ y = 12±838

⇒ y = 32 ± √ 3 = 1.5 ± √ 3

The value of y cannot be negative. Therefore, y = 1.5 + √ 3 

The answer is 1.5 + √ 3.

The correct answer is option (1).

Get Free Access Now
Hot Links: teen patti gold new version teen patti bodhi teen patti vungo