Logarithmic Function MCQ Quiz - Objective Question with Answer for Logarithmic Function - Download Free PDF

Last updated on Apr 30, 2025

Latest Logarithmic Function MCQ Objective Questions

Logarithmic Function Question 1:

If t = e2x and y = = loge t2, then d2ydx2 is :

  1. 0
  2. 4t
  3. 4e2tt
  4. e2t(4t1)t2

Answer (Detailed Solution Below)

Option 1 : 0

Logarithmic Function Question 1 Detailed Solution

Concept:

  • We are given:
    • t = e2x
    • y = loge(t²) = 2 loge(t)
  • We need to find the second derivative d²y/dx².
  • This requires the chain rule and product rule of differentiation.

 

Calculation:

Step 1: Express y in terms of x

y = 2 log(t), where t = e2x

Since log(t) = log(e2x) = 2x

⇒ y = 2 × 2x = 4x

First derivative:

dy/dx = d/dx (4x) = 4

Second derivative:

d²y/dx² = d/dx (4) = 0

∴ The correct answer is: 0.

Logarithmic Function Question 2:

If x=y2=z3=w4=u5, then find the value of logx xyzwu.

  1. 21760
  2. 111120
  3. 32
  4. 2730

Answer (Detailed Solution Below)

Option 1 : 21760

Logarithmic Function Question 2 Detailed Solution

Let, x=y2=z3=w4=u5=k

x=k,y=k1/2,z=k1/3,w=k1/4,u=k1/5

Therefore, xyzwu=k1+1/2+1/3+1/4+1/5=k137,60

Therefore, logxxyzwu=logkk13750=21760

Logarithmic Function Question 3:

If log10(x3y3x3+y3)=2, then dydx=

  1. xy
  2. yx
  3. xy
  4. yx

Answer (Detailed Solution Below)

Option 4 : yx

Logarithmic Function Question 3 Detailed Solution

Calculation

Given equation is log10(x3y3x3+y3)=2

x3y3x3+y3=100

applying componendo and dividendo gives,

x3y3=10199

x3y3=10199

Differentiating with respect to x gives,

3x2y2(yxdydxy2)=0

dydx=yx

Hence option 4 is correct

Logarithmic Function Question 4:

If y = logn x, where logn means loge loge... (repeated n times), then

x log x log2 x log3 x ..... logn-1 x logn x dydx is equal to

  1. log x
  2. x
  3. 1
  4. logn x

Answer (Detailed Solution Below)

Option 4 : logn x

Logarithmic Function Question 4 Detailed Solution

Calculation

y = logn x

dydx=1(xlogn1xlogn2x...logx)

x log x log2 x log3 x ..... logn-1 x logn x dydx = logn x

Hence option 4 is correct 

Logarithmic Function Question 5:

If y is a function of x and log(x + y) = 2xy, then the value of y'(0) is

  1. 1
  2. -1
  3. 2
  4. 0

Answer (Detailed Solution Below)

Option 1 : 1

Logarithmic Function Question 5 Detailed Solution

Answer : 1

Solution :

log(x + y) = 2xy

Differentiating w.r.t. x, we get

1x+y(1+dy dx)=2x dy dx+2y

1x+y(1+dy dx)=2x dy dx+2y

(1x+y2x)dy dx=2y1x+y

dy dx(1x+y2x)=2y1x+y

dy dx=(2y1x+y)(1x+y2x)

For x = 0, log(y) = 0

⇒ y = 1

dy dx|(0,1)=(210+1)(10+10)=1

Top Logarithmic Function MCQ Objective Questions

Find derivative of (x)log x with respect to x

  1. xx1(logx2)
  2. xlogx1(logx2)
  3. xlogx(logx2)
  4. ​None of these

Answer (Detailed Solution Below)

Option 2 : xlogx1(logx2)

Logarithmic Function Question 6 Detailed Solution

Download Solution PDF

Concept:

Formula:

log mn = n log m

d(uv)dx=vdudx+udvdx

dlogxdx=1x

dxdx=1

Calculation:

Let y = xlog x

Taking log both sides, we get

⇒ log y = xlog x

⇒ log y = log x log  x            (∵ log mn = n log m)

Differentiating with respect to x, we get

⇒ 1ydydx=logxdlogxdx+logxdlogxdx

⇒ dydx=y(logx×1x+logx×1x)

⇒ dydx=xlogxx (2logx)

⇒ dydx=xlogx1(logx2)

If y = logx, then dydx is equal to:

  1. 1x+logy
  2. 1logx(1+y)
  3. 1x(1+logy)
  4. 1y+logx

Answer (Detailed Solution Below)

Option 3 : 1x(1+logy)

Logarithmic Function Question 7 Detailed Solution

Download Solution PDF

Concept:

Product rule of differentiation:

Let h(x) = f(x)g(x), then h'(x) = f'(x)g(x) + f(x)g'(x)

Calculation:

Given, y = logx

⇒ y = logxlogy

⇒ y log y = log x

By differentiating both sides w.r.t. x, we get

dydxlogy+y1ydydx=1x

logydydx+dydx=1x

⇒ dydx(1+logy)=1x

∴ dydx=1x(1+logy)

log 2 =  x, log 3 = y, then log 6 is

  1. x - y
  2. xy
  3. x + y
  4. x/y

Answer (Detailed Solution Below)

Option 3 : x + y

Logarithmic Function Question 8 Detailed Solution

Download Solution PDF

Given:

log 2 =  x, log 3 = y

Concept:

Properties of Logarithms:

  1. logaa=1
  2. loga(x.y)=logax+logay
  3. loga(xy)=logaxlogay
  4. loga(1x)=logax
  5. logaxp=plogax
  6. loga(x)=logb(x)logb(a)

Calculation:

log 6 = log (2 x 3)

From 2nd property of logarithms

log 6 = log 2 + log 3

log 6 = x + y

If f(x) = log x2, where x > 1 find derivative of f(x)

  1. 2x2
  2. 1x
  3. 2x
  4. 1x2

Answer (Detailed Solution Below)

Option 3 : 2x

Logarithmic Function Question 9 Detailed Solution

Download Solution PDF

Concept:

Chain rule: ddx[f(g(x))]=f(g(x))g(x)

If y = log x, then f'(x) = 1/x

And if y = xn, then f'(x) = nxn - 1

Calculation:

f(x) = log x2, x > 1

Differentiating with respect to x, we get

⇒ f'(x) = (1x2)dx2dx 

⇒ f'(x) = 2xx2

⇒ f'(x) = 2x

If xmyn=xyam+n, then what is dydx equal to?

  1. (m1)x(n1)y
  2. mynx
  3. (m1)y(n1)x
  4. None of these

Answer (Detailed Solution Below)

Option 3 : (m1)y(n1)x

Logarithmic Function Question 10 Detailed Solution

Download Solution PDF

Concept:

Suppose that we have two functions f(x) and g(x) and they are both differentiable.

  • Chain Rule: ddx[f(g(x))]=f(g(x))g(x)
  • Product Rule: ddx[f(x)g(x)]=f(x)g(x)+f(x)g(x)
  • log ab = b log a 


Calculation:-  

xmyn=xyam+n , where a is constant 

Taking log both sides, we get

⇒ log(xmyn)=log(xyam+n)

⇒ log xm + log yn = log x + log y + log am+n

⇒ m log x + n log y = log x + log y + (m + n) log a 

Differentiate both sides w.r.t  x, we get

⇒ mx+nydydx=1x+1ydydx+0   [∵  dconstantdx=0 ]  

⇒ dydx[ny1y]=[1xmx] 

⇒  dydx=(m1)y(n1)x . 

The correct option is 3. 

If f(x) = log √x, find derivative of f(x)

  1. 12x
  2. 1x
  3. 1x
  4. 2x

Answer (Detailed Solution Below)

Option 1 : 12x

Logarithmic Function Question 11 Detailed Solution

Download Solution PDF

Concept:

Chain rule: 

ddx[f(g(x))]=f(g(x))g(x)

If y = log x, then f'(x) = 1/x

And if y = √x, then f'(x) = 12x

Calculation:

f(x) = log √x

Differentiating with respect to x, we get

⇒ f'(x) = (1x)dxdx 

⇒ f'(x) = 1x⋅ 12x

⇒ f'(x) = 12x

If f(x) = log (sin x), find derivative of f(x)

  1. tan x
  2. sec x
  3. cosec x
  4. cot x

Answer (Detailed Solution Below)

Option 4 : cot x

Logarithmic Function Question 12 Detailed Solution

Download Solution PDF

Concept:

Chain rule: ddx[f(g(x))]=f(g(x))g(x)

If y = log x, then f'(x) = 1/x

And if y = sin x, then f'(x) = cos x

Calculation:

f(x) = log (sin x)

Differentiating with respect to x, we get

⇒ f'(x) = (1sin x)dsin x dx 

⇒ f'(x) = cos xsin x

⇒ f'(x) = cot x

Differentiate {-log (log x), x > 1} with respect to x

  1. -1 / (x log x)
  2. 1 / (log x)
  3. 1 / x
  4. x log x

Answer (Detailed Solution Below)

Option 1 : -1 / (x log x)

Logarithmic Function Question 13 Detailed Solution

Download Solution PDF

Concept:

Chain rule: 

ddx[f(g(x))]=f(g(x))g(x)

Calculation:

Here, -log (log x), x > 1

Let, log x = y 

Differentiating with respect to x, we get

⇒ dy/dx = 1/x        ....(1)

Now, -log (log x) = -log y

ddx(logy)=1ydydx

= -1 / (x log x)    ....(from (1))

Hence, option (1) is correct. 

If log 2 = 0.2614, log 3 = 0.3521, log 6 = ?

  1. 0.0920
  2. 0.6135
  3. 1.2614
  4. 1.3521

Answer (Detailed Solution Below)

Option 2 : 0.6135

Logarithmic Function Question 14 Detailed Solution

Download Solution PDF

Given the values:

log 2 = 0.2614

log 3 = 0.3521

Formula Used:

Using the logarithm property:

 

Calculation:

We can write as 6 = 2 x 3

Using the property:

log 6 = log 2 + log 3

Substituting the given values:

⇒ log 6 = 0.6135

Hence the value log 6 is 0.6135.

Therefore, the correct option is (2)

Logarithmic Function Question 15:

Find derivative of (x)log x with respect to x

  1. xx1(logx2)
  2. xlogx1(logx2)
  3. xlogx(logx2)
  4. ​None of these

Answer (Detailed Solution Below)

Option 2 : xlogx1(logx2)

Logarithmic Function Question 15 Detailed Solution

Concept:

Formula:

log mn = n log m

d(uv)dx=vdudx+udvdx

dlogxdx=1x

dxdx=1

Calculation:

Let y = xlog x

Taking log both sides, we get

⇒ log y = xlog x

⇒ log y = log x log  x            (∵ log mn = n log m)

Differentiating with respect to x, we get

⇒ 1ydydx=logxdlogxdx+logxdlogxdx

⇒ dydx=y(logx×1x+logx×1x)

⇒ dydx=xlogxx (2logx)

⇒ dydx=xlogx1(logx2)

Get Free Access Now
Hot Links: teen patti circle teen patti game teen patti customer care number