What is \(\rm \int \frac{dx}{x(x^2 + 1)}\) equal to?

This question was previously asked in
NDA 02/2021: Maths Previous Year paper (Held On 14 Nov 2021)
View all NDA Papers >
  1. \(\rm \frac{1}{2}ln\left(\frac{x^2}{x^2 + 1}\right) + C\)
  2. \(\rm ln\left(\frac{x^2}{x^2 + 1}\right) + C\)
  3. \(\rm \frac{3}{2}ln\left(\frac{x^2}{x^2 + 1}\right) + C\)
  4. \(\rm \frac{1}{2}ln\left(\frac{x^2+1}{x^2}\right) + C\)

Answer (Detailed Solution Below)

Option 1 : \(\rm \frac{1}{2}ln\left(\frac{x^2}{x^2 + 1}\right) + C\)
Free
NDA 01/2025: English Subject Test
5.7 K Users
30 Questions 120 Marks 30 Mins

Detailed Solution

Download Solution PDF

Formula used:

\(\rm \int \frac{1}{x} dx = log \: x + C\)

logax - logay = \(\rm log_{a}\frac{x}{y}\)

Calculation:

\(\int \frac{dx}{x(x^2 + 1)}\)

⇒ \(\rm \int \frac{dx}{x} - \frac{xdx}{x^{2} + 1}\)

 \(\rm \int \frac{dx}{x} - \frac{1}{2}\int \frac{2xdx}{x^{2} + 1}\)

ln x - \(\rm \frac{1}{2} ln |1 + x^{2}|\) + c

⇒ \(\frac{1}{2} \ln x^{2} -\)\(\rm \frac{1}{2} ln |1 + x^{2}|\) + c

 \(\rm \frac{1}{2}ln\left(\frac{x^2}{x^2 + 1}\right) + C\)

∴ \(\int \frac{dx}{x(x^2 + 1)}\) is equal to 

\(\rm \frac{1}{2}ln\left(\frac{x^2}{x^2 + 1}\right) + C\).

Latest NDA Updates

Last updated on Jun 18, 2025

->UPSC has extended the UPSC NDA 2 Registration Date till 20th June 2025.

-> A total of 406 vacancies have been announced for NDA 2 Exam 2025.

->The NDA exam date 2025 has been announced. The written examination will be held on 14th September 2025.

-> The selection process for the NDA exam includes a Written Exam and SSB Interview.

-> Candidates who get successful selection under UPSC NDA will get a salary range between Rs. 15,600 to Rs. 39,100. 

-> Candidates must go through the NDA previous year question paper. Attempting the NDA mock test is also essential. 

Get Free Access Now
Hot Links: teen patti chart teen patti gold new version teen patti sequence teen patti master real cash teen patti master purana