The value of \(\rm \displaystyle\lim_{x\to 0}\dfrac{\tan x - x}{x^2 \tan x}\) is equal to:

This question was previously asked in
NIMCET 2013 Official Paper
View all NIMCET Papers >
  1. 0
  2. 1
  3. \(\dfrac{1}{2}\)
  4. \(\dfrac{1}{3}\)

Answer (Detailed Solution Below)

Option 4 : \(\dfrac{1}{3}\)
Free
NIMCET 2020 Official Paper
10.5 K Users
120 Questions 480 Marks 120 Mins

Detailed Solution

Download Solution PDF

Concept:

  • \(\rm \displaystyle \lim_{x\to0}\dfrac{\tan x}{x}=1\).
  • \(\rm \dfrac{d}{dx}\tan x=\sec^2x\).
  • \(\rm \dfrac{d}{dx}\sec x=\tan x\sec x\).
  • \(\rm \dfrac{d}{dx}\left[f(x)\times g(x)\right]=f(x)\dfrac{d}{dx}g(x)+g(x)\dfrac{d}{dx}f(x)\).

 

Indeterminate Forms: Any expression whose value cannot be defined, like \(\dfrac00\), \(\pm\dfrac{\infty}{\infty}\), 00, ∞0 etc.

  • For the indeterminate form \(\dfrac 0 0\), first try to rationalize by multiplying with the conjugate, or simplify by cancelling some terms in the numerator and denominator. Else, use the L'Hospital's rule.
  • L'Hospital's Rule: For the differentiable functions f(x) and g(x), the \(\rm \displaystyle \lim_{x\to c} \dfrac{f(x)}{g(x)}\), if f(x) and g(x) are both 0 or ±∞ (i.e. an Indeterminate Form) is equal to the \(\rm \displaystyle \lim_{x\to c} \dfrac{f'(x)}{g'(x)}\) if it exists.

 

Calculation:

\(\rm \displaystyle\lim_{x\to 0}\dfrac{\tan x - x}{x^2 \tan x}=\dfrac00\) is an indeterminate form. Let us simplify and use the L'Hospital's Rule.

\(\rm \displaystyle\lim_{x\to 0}\dfrac{\tan x - x}{x^2 \tan x}=\lim_{x\to 0}\left[\dfrac{\tan x - x}{x^3}\times\dfrac{x}{\tan x}\right]\).

We know that \(\rm \displaystyle\lim_{x\to 0}\dfrac{x}{\tan x}=1\), but \(\rm \displaystyle \lim_{x\to 0}\dfrac{\tan x - x}{x^3}\) is still an indeterminate form, so we use L'Hospital's Rule:

\(\rm \displaystyle \rm \displaystyle \lim_{x\to 0}\dfrac{\tan x - x}{x^3}=\lim_{x\to 0}\dfrac{\sec^2 x - 1}{3x^2}\), which is still an indeterminate form, so we use L'Hospital's Rule again:

\(\rm \displaystyle \lim_{x\to 0}\dfrac{\sec^2 x - 1}{3x^2}= \lim_{x\to 0}\dfrac{2\sec x(\sec x\tan x)}{6x}=\lim_{x\to 0}\dfrac{\sec^2 x\tan x}{3x}\), which is still an indeterminate form, so we use L'Hospital's Rule again:

\(\rm \displaystyle \lim_{x\to 0}\dfrac{\sec^2 x\tan x}{3x}=\lim_{x\to 0}\dfrac{\sec^2 x\sec^2 x+\tan x[2\sec x(\sec x \tan x)]}{3}=\dfrac{1}{3}\).

∴ \(\rm \displaystyle\lim_{x\to 0}\dfrac{\tan x - x}{x^2 \tan x}=1\times\dfrac{1}{3}=\dfrac{1}{3}\).

Latest NIMCET Updates

Last updated on Jun 2, 2025

-> NIMCET 2025 admit card will be declared on June 3, 2025. Candidates can download the hall ticket till June 8, 2025.

-> NIMCET 2025 exam is scheduled for June 8, 2025. It will be conducted in Computer-Based Test (CBT) mode and will consist of 120 multiple-choice questions.

-> NIMCET 2025 results will be declared on June 27, 2025.

-> Check NIMCET 2025 previous year papers to know the exam pattern and improve your preparation.

Get Free Access Now
Hot Links: teen patti wink teen patti boss teen patti stars rummy teen patti