The Fourier transform of unit sequence is

This question was previously asked in
ESE Electronics 2010 Paper 1: Official Paper
View all UPSC IES Papers >
  1. \(\pi \delta \left( \Omega \right)\)
  2. \(\frac{1}{{1 - {e^{ - j\Omega }}}}\)
  3. \(\pi \delta \left( \Omega \right) + \frac{1}{{1 - {e^{ - j\Omega }}}}\)
  4. \(1 - {e^{ - j\Omega }}\)

Answer (Detailed Solution Below)

Option 3 : \(\pi \delta \left( \Omega \right) + \frac{1}{{1 - {e^{ - j\Omega }}}}\)
Free
ST 1: UPSC ESE (IES) Civil - Building Materials
6.4 K Users
20 Questions 40 Marks 24 Mins

Detailed Solution

Download Solution PDF

The unit step sequence is defined as:

\(u(n) = \begin{cases} 1 &{for~n\ge0}\\ 0&{for~n<0} \end{cases}\)

\(\sum_{-\infty}^{\infty} |u(n)|=\infty \)

Since the unit step sequence is not absolutely integrable, we cannot find the Fourier transform using the standard formula. 

Hence, we will derive the Fourier transform of the unit step sequence starting from the Fourier transform of the signum function. 

The signum function can be defined as follows:

\(\)\(sgn(n) = \begin{cases} 1 &{for~n>0}\\ 0&{for~n=0}\\ -1&{for~n<0} \end{cases}\)

 

∴ We can see that the signum function is also not absolutely integrable. 

The signum function can be made absolutely integrable by multiplying with the exponential function.

\(sgn(n)= \mathop {\lim }\limits_{a \to 0 }~[e^{-an}u(n) - e^{an}u(-n)]\)

Taking Fourier transform we get:

\(F[sgn(n)]=\mathop {\lim }\limits_{a \to 0 }~[\frac{1}{1-e^{-a-j\omega}}-\frac{1}{1-e^{a+j\omega}}]\)

\(F[sgn(t)]=\mathop {\lim }\limits_{a \to 0 }~[\frac{-2j\omega}{a^2+\omega^2}]\)

\(F[sgn(t)]=\frac{2}{j\omega}\)

Now, the unit step signal can be represented in terms of signum function as follows:

\(u(t)=\frac{1+sgn(t)}{2}\)

Taking Fourier transform we get:

\(F[u(t)]=F[\frac{1}{2}]+\frac{1}{2}F[sgn(t)]\)

We know, the Fourier transform of a DC signal 'A' is given as:

\(A \mathop \leftrightarrow \limits^{\;F.T\;} 2\pi A ~\delta(\omega)\)

∴ \(F[u(t)]=2\pi \times \frac{1}{2}\times\delta(\omega)+\frac{1}{2}\times \frac{2}{j\omega}\)

 \(F[u(t)]=\pi~ \delta(\omega)+ \frac{1}{j\omega}\)

y(n) = u(n)

\(u\left( n \right) = \begin{array}{*{20}{c}} 1&{n = 0,1,2, \ldots }\\ 0&{else} \end{array}\)

Y(e) = ?

If \(y\left( n \right) = \mathop \sum \limits_{m = - \infty }^\infty x\left( m \right)\)

Using Accumlation property of DTFT

\(X\left( {{e^{J\omega }}} \right) \mathbin{\lower.3ex\hbox{$\buildrel\textstyle\leftharpoonup\over {\smash{\rightharpoondown}}$}} x\left( n \right)\)

\(DT{\rm{ }}F.T.\left[ {y\left( n \right)} \right] = \frac{1}{{1 - {e^{ - J\omega }}}}X\left( {eJ\omega } \right) + \pi \times \left( {{e^{J0}}} \right)\mathop \sum \limits_{K = - \infty }^\infty \delta \left( {\omega - 2\pi K} \right)\)

y(n) = u(n)

x(n) = δ(n)

\(u\left( n \right) = \mathop \sum \limits_{m = - \infty }^n \delta \left( m \right)\)

X(e) = DTFT of δ(n) = 1

By Accumlation property

\(y\left( {{e^{J\omega }}} \right) = \frac{1}{{1 - {e^{ - J\omega }}}} + \pi \mathop \sum \limits_{K = - \infty }^\infty \delta \left( {\omega - 2\pi K} \right)\)

For ω ∈ [-π, π]

\(y\left( {{e^{J\omega }}} \right) = \frac{1}{{1 - {e^{ - J\omega }}}} + \pi \delta \left( \omega \right)\)

Latest UPSC IES Updates

Last updated on Jul 2, 2025

-> ESE Mains 2025 exam date has been released. As per the schedule, UPSC IES Mains exam 2025 will be conducted on August 10. 

-> UPSC ESE result 2025 has been released. Candidates can download the ESE prelims result PDF from here.

->  UPSC ESE admit card 2025 for the prelims exam has been released. 

-> The UPSC IES Prelims 2025 will be held on 8th June 2025.

-> The selection process includes a Prelims and a Mains Examination, followed by a Personality Test/Interview.

-> Candidates should attempt the UPSC IES mock tests to increase their efficiency. The UPSC IES previous year papers can be downloaded here.

Get Free Access Now
Hot Links: teen patti yes teen patti lotus teen patti palace teen patti chart