If the vectors \(a\hat i + \hat j + \hat k,\;\hat i + b\hat j + \hat k\) and \(\hat i + \hat j + c\hat k\;\left( {a,\;b,\;c \ne 1} \right)\) are coplanar, then the value of \(\frac{1}{{1 - a}} + \frac{1}{{1 - b}} + \frac{1}{{1 - c}}\) is equal to

This question was previously asked in
NDA (Held On: 10 Sept 2017) Maths Previous Year paper
View all NDA Papers >
  1. 1
  2. 2
  3. a + b + c
  4. abc

Answer (Detailed Solution Below)

Option 1 : 1
Free
UPSC NDA 01/2025 General Ability Full (GAT) Full Mock Test
5.8 K Users
150 Questions 600 Marks 150 Mins

Detailed Solution

Download Solution PDF

Concept:

Scaler triple product of the vectors:

The scaler triple product of the vectors \({\rm{\bar A}} = {{\rm{x}}_1}\hat i + \;{y_1}\hat j + {\rm{\;}}{{\rm{z}}_1}\hat k,\;\bar B = \;{x_2}\hat i + \;{y_2}\hat j + {z_2}\hat k\) and \({\rm{\bar C}} = {\rm{\;}}{{\rm{x}}_3}\hat i + \;{y_3}\hat j + {\rm{\;}}{{\rm{z}}_3}\hat k\) is given by:

\({\rm{\bar A}} \cdot \left[ {{\rm{\bar B}} \times {\rm{\bar C}}} \right] = {\rm{\;}}\left| {\begin{array}{*{20}{c}} {{{\rm{x}}_1}}&{{{\rm{y}}_1}}&{{{\rm{z}}_1}}\\ {{{\rm{x}}_2}}&{{{\rm{y}}_2}}&{{{\rm{z}}_2}}\\ {{{\rm{x}}_3}}&{{{\rm{y}}_3}}&{{{\rm{z}}_3}} \end{array}} \right|\)

Coplaner vectors:

Three vectors \({\rm{\bar A}} = {{\rm{x}}_1}\hat i + \;{y_1}\hat j + {\rm{\;}}{{\rm{z}}_1}\hat k,\;\bar B = \;{x_2}\hat i + \;{y_2}\hat j + {z_2}\hat k\) and \({\rm{\bar C}} = {\rm{\;}}{{\rm{x}}_3}\hat i + \;{y_3}\hat j + {\rm{\;}}{{\rm{z}}_3}\hat k\) are said to be coplaner if the scaler triple product \({\bf{\bar A}} \cdot \left[ {{\bf{\bar B}} \times {\bf{\bar C}}} \right] = 0.\)

 

Solution:

Let the given vectors be \({\rm{\bar A}} = {\rm{a}}\hat i + \;\hat j + {\rm{\;}}\hat k,\;\bar B = \;\hat i + \;b\hat j + \hat k\) and \({\rm{\bar C}} = {\rm{\;}}\hat i + \;\hat j + {\rm{c}}\hat k\).

It is given that the vectors are coplaner therefore the scaler triple product \({\rm{\bar A}} \cdot \left[ {{\rm{\bar B}} \times {\rm{\bar C}}} \right] = 0.\)

Therefore,

\(\left| {\begin{array}{*{20}{c}} {\rm{a}}&1&1\\ 1&{\rm{b}}&1\\ 1&1&{\rm{c}} \end{array}} \right| = 0\)

Perform the coloumn operation C1 – C2 as follows:

\(\left| {\begin{array}{*{20}{c}} {{\rm{a}} - 1}&1&1\\ {1 - {\rm{b}}}&{\rm{b}}&1\\ 0&1&{\rm{c}} \end{array}} \right| = 0\)

Now perform another coloum operation C2 – C3 as follows:

\(\left| {\begin{array}{*{20}{c}} {{\rm{a}} - 1}&0&1\\ {1 - {\rm{b}}}&{{\rm{b}} - 1}&1\\ 0&{1 - {\rm{c}}}&{\rm{c}} \end{array}} \right| = 0\)

Take (1 - a)(1 - b)(1 - c) common. Note that it is given that a,b,c ≠ 0 therefore this action is jstified.

\(\left( {1 - {\rm{a}}} \right)\left( {1 - {\rm{b}}} \right)\left( {1 - {\rm{c}}} \right)\left| {\begin{array}{*{20}{c}} { - 1}&0&{\frac{1}{{1 - {\rm{a}}}}}\\ 1&{ - 1}&{\frac{1}{{1 - {\rm{b}}}}}\\ 0&1&{\frac{{\rm{c}}}{{1 - {\rm{c}}}}} \end{array}} \right| = 0\)

Since a, b, c ≠ 0 therefore (1 - a)(1 - b)(1 - c) ≠ 0.Therefore the determinant has to be zero.

\( - 1\left( {\frac{{\rm-{c}}}{{1 - {\rm{c}}}} - {\rm{}}\frac{1}{{1 - {\rm{b}}}}} \right) + {\rm{\;}}\frac{1}{{1 - {\rm{a}}}} = 0\)

\(\frac{1}{{1 - {\rm{b}}}} + {\rm{\;}}\frac{{\rm{c}}}{{1 - {\rm{c}}}} + {\rm{\;}}\frac{1}{{1 - {\rm{a}}}} = 0\)

Simplify the above expression as follows:

\(\frac{1}{{1 - {\rm{b}}}} + {\rm{\;}}\frac{1}{{1 - {\rm{c}}}} - {\rm{\;}}1 + {\rm{\;}}\frac{1}{{1 - {\rm{a}}}} = 0\)

\(\frac{1}{{1 - {\rm{b}}}} + {\rm{\;}}\frac{1}{{1 - {\rm{c}}}} + {\rm{\;}}\frac{1}{{1 - {\rm{a}}}} = 1\)

Therefore, \(\frac{1}{{1 - {\rm{b}}}} + {\rm{\;}}\frac{1}{{1 - {\rm{c}}}} + {\rm{\;}}\frac{1}{{1 - {\rm{a}}}} = 1\).
Latest NDA Updates

Last updated on Jul 8, 2025

->UPSC NDA Application Correction Window is open from 7th July to 9th July 2025.

->UPSC had extended the UPSC NDA 2 Registration Date till 20th June 2025.

-> A total of 406 vacancies have been announced for NDA 2 Exam 2025.

->The NDA exam date 2025 has been announced. The written examination will be held on 14th September 2025.

-> The selection process for the NDA exam includes a Written Exam and SSB Interview.

-> Candidates who get successful selection under UPSC NDA will get a salary range between Rs. 15,600 to Rs. 39,100. 

-> Candidates must go through the NDA previous year question paper. Attempting the NDA mock test is also essential. 

More Properties of Vectors Questions

More Vector Algebra Questions

Get Free Access Now
Hot Links: teen patti master golden india lotus teen patti teen patti - 3patti cards game downloadable content teen patti master gold download