\(\mathop \smallint \limits_0^{2{\rm{\pi }}} \sqrt {1 + \cos{ \frac{{\rm{x}}}{2}}} {\rm{dx\;}}\) किसके बराबर है?

  1. 8\(\sqrt 2\)
  2. 2\(\sqrt 2\)
  3. 6
  4. 4\(\sqrt 2\)

Answer (Detailed Solution Below)

Option 4 : 4\(\sqrt 2\)
Free
NDA 01/2025: English Subject Test
5.7 K Users
30 Questions 120 Marks 30 Mins

Detailed Solution

Download Solution PDF

संकल्पना:

\(\rm {\sin ^2}{\rm{x}} + {\cos ^2}{\rm{x}} = 1\)

\(\rm\cos 2{\rm{x}} = cos^2{x} - sin^2{x}\)

गणना:

माना कि \({\rm{I}} = \mathop \smallint \limits_0^{2{\rm{\pi }}} \sqrt {1 + \cos \frac{{\rm{x}}}{2}} {\rm{dx}}\)  है। 

\(⇒ {\rm{I}} = \mathop \smallint \limits_0^{2{\rm{\pi }}} \sqrt {(\rm 2cos^2{(\frac {x}{4})}})\)

\(⇒ {\rm{I}} = \sqrt 2\mathop \smallint \limits_0^{2{\rm{\pi }}} \cos{(\frac {\rm x}{4})}\)

\(⇒ {\rm{I}} = 4\sqrt 2\left[ { \sin {\rm{(\frac {x}{4}})}} \right]_0^{2\pi}\)

\(⇒ {\rm{I}} = 4\sqrt 2[ { \sin {\rm{(\frac {2\pi}{4}}) - sin0^o}}]\)

\(⇒ {\rm{I}} = 4 \sqrt 2(\sin {\frac {\pi}{2}})\)

\(⇒ {\rm{I}} = 4 \sqrt 2\)

अतः विकल्प (4) सही है। 

Latest NDA Updates

Last updated on Jun 18, 2025

->UPSC has extended the UPSC NDA 2 Registration Date till 20th June 2025.

-> A total of 406 vacancies have been announced for NDA 2 Exam 2025.

->The NDA exam date 2025 has been announced. The written examination will be held on 14th September 2025.

-> The selection process for the NDA exam includes a Written Exam and SSB Interview.

-> Candidates who get successful selection under UPSC NDA will get a salary range between Rs. 15,600 to Rs. 39,100. 

-> Candidates must go through the NDA previous year question paper. Attempting the NDA mock test is also essential. 

More Definite Integrals Questions

Get Free Access Now
Hot Links: teen patti online teen patti master 51 bonus teen patti master downloadable content teen patti gold new version