Question
Download Solution PDF\(\mathop \smallint \limits_0^{4{\rm{\pi }}} \left| {\cos {\rm{x}}} \right|{\rm{dx}}\) किसके बराबर है?
Answer (Detailed Solution Below)
Detailed Solution
Download Solution PDFधारणा:
निश्चित समाकल के लिए गुण
- \({\rm{If\;f}}\left( {2{\rm{a}} - {\rm{x}}} \right) = {\rm{f}}\left( {\rm{x}} \right){\rm{\;then}}\mathop \smallint \nolimits_0^{2{\rm{a}}} {\rm{f}}\left( {\rm{x}} \right){\rm{dx}} = 2\mathop \smallint \nolimits_0^{\rm{a}} {\rm{f}}\left( {\rm{x}} \right){\rm{dx}}\)
- यदि f(x) अवधि T के साथ आवधिक फलन है तो \(\mathop \smallint \nolimits_0^{{\rm{nT}}} {\rm{f}}\left( {\rm{x}} \right){\rm{dx}} = {\rm{n}}\mathop \smallint \nolimits_0^{\rm{T}} {\rm{f}}\left( {\rm{x}} \right){\rm{dx}},{\rm{\;n}} \in {\rm{Z}}\)
गणना:
\({\rm{Let\;I\;}} = \;\mathop \smallint \limits_0^{4{\rm{\pi }}} \left| {\cos {\rm{x}}} \right|{\rm{dx}}\)
|cos x| की अवधि π है
\({\rm{I\;}} = {\rm{\;}}4\mathop \smallint \limits_0^{\rm{\pi }} \left| {\cos {\rm{x}}} \right|{\rm{dx}}\)
\(\left| {\cos x} \right| = \left\{ {\begin{array}{*{20}{c}} {\cos {\rm{x}},\;\;0 \le x < \frac{{\rm{\pi }}}{2}}\\ { - \cos {\rm{x}},\;\;\frac{{\rm{\pi }}}{2} \le x < \pi } \end{array}} \right.\)
\({\rm{I\;}} = {\rm{\;}}4\left[ {\mathop \smallint \limits_0^{\frac{{\rm{\pi }}}{2}} \cos {\rm{xdx}} + \mathop \smallint \limits_{\frac{{\rm{\pi }}}{2}}^{\rm{\pi }} \left( { - \cos {\rm{x}}} \right){\rm{dx}}} \right]\)
\( = {\rm{\;}}4{\rm{\;}}\left[ {\sin x} \right]_0^{\frac{{\rm{\pi }}}{2}} - 4\left[ {\sin x} \right]_{\frac{{\rm{\pi }}}{2}}^{\rm{\pi }}\)
\(= {\rm{\;}}4{\rm{\;}}\left( {\sin \frac{{\rm{\pi }}}{2} - \;\sin 0} \right) - 4{\rm{\;}}\left( {\sin {\rm{\pi }} - \;\sin \frac{{\rm{\pi }}}{2}} \right)\)
= 4(1 – 0) – 4(0 – 1)
= 4 + 4 = 8
Last updated on Jun 18, 2025
->UPSC has extended the UPSC NDA 2 Registration Date till 20th June 2025.
-> A total of 406 vacancies have been announced for NDA 2 Exam 2025.
->The NDA exam date 2025 has been announced. The written examination will be held on 14th September 2025.
-> The selection process for the NDA exam includes a Written Exam and SSB Interview.
-> Candidates who get successful selection under UPSC NDA will get a salary range between Rs. 15,600 to Rs. 39,100.
-> Candidates must go through the NDA previous year question paper. Attempting the NDA mock test is also essential.