Question
Download Solution PDFयदि \(\frac{4}{x}<\frac{1}{3}\) x के लिए मानों की संभावित सीमा क्या है?
Answer (Detailed Solution Below)
Detailed Solution
Download Solution PDFसंकल्पना:
असमिकाओं पर संचालन के नियम:
- असमिका के प्रत्येक पक्ष में समान संख्या जोड़ने से असमिका के चिह्न की दिशा नहीं बदलती है।
- असमिका के प्रत्येक पक्ष से समान संख्या को घटाना असमिका के चिह्न की दिशा को नहीं बदलता है।
- एक असमिका के प्रत्येक पक्ष को धनात्मक संख्या से गुणा करने से असमिका के चिह्न की दिशा नहीं बदलती है।
- एक असमिका के प्रत्येक पक्ष को एक ऋणात्मक संख्या से गुणा करने से असमिका के चिह्न की दिशा विपरित हो जाती है।
- एक असमिका के प्रत्येक पक्ष को धनात्मक संख्या से विभाजित करने से असमिका के चिह्न की दिशा नहीं बदलती है।
- एक असमिका के प्रत्येक पक्ष को ऋणात्मक संख्या से विभाजित करने से असमिका के चिह्न की दिशा विपरित हो जाती है।
गणना:
दिया हुआ:
\(\frac{4}{x}<\frac{1}{3}\)
\(\Rightarrow \frac{4}{x}-~\frac{1}{3}<0\)
\(\Rightarrow \frac{12-x}{3x}<0\)
\(\Rightarrow \frac{-~\left( x-12 \right)}{3x}<0\)
- एक असमिका के प्रत्येक पक्ष को एक ऋणात्मक संख्या से गुणा करने से असमिका के चिह्न की दिशा विपरित हो जाती है।
\(\Rightarrow \frac{\left( x-12 \right)}{3x}>0\), यहाँ x ≠ 0
∴ x < 0 या x > 12
Last updated on Jun 17, 2025
-> The CUET 2025 provisional answer key has been made public on June 17, 2025 on the official website.
-> The CUET 2025 Postponed for 15 Exam Cities Centres.
-> The CUET 2025 Exam Date was between May 13 to June 3, 2025.
-> 12th passed students can appear for the CUET UG exam to get admission to UG courses at various colleges and universities.
-> Prepare Using the Latest CUET UG Mock Test Series.
-> Candidates can check the CUET Previous Year Papers, which helps to understand the difficulty level of the exam and experience the same.