Quantum Mechanics MCQ Quiz in తెలుగు - Objective Question with Answer for Quantum Mechanics - ముఫ్త్ [PDF] డౌన్‌లోడ్ కరెన్

Last updated on Apr 23, 2025

పొందండి Quantum Mechanics సమాధానాలు మరియు వివరణాత్మక పరిష్కారాలతో బహుళ ఎంపిక ప్రశ్నలు (MCQ క్విజ్). వీటిని ఉచితంగా డౌన్‌లోడ్ చేసుకోండి Quantum Mechanics MCQ క్విజ్ Pdf మరియు బ్యాంకింగ్, SSC, రైల్వే, UPSC, స్టేట్ PSC వంటి మీ రాబోయే పరీక్షల కోసం సిద్ధం చేయండి.

Latest Quantum Mechanics MCQ Objective Questions

Top Quantum Mechanics MCQ Objective Questions

Quantum Mechanics Question 1:

The energy levels available to each electron in a system of N non-interacting electrons are En = nE0, n = 0,1,2, ... A magnetic field, which does not affect the energy spectrum, but completely polarizes the electron spins, is applied to the system. The change in the ground state energy of the system is

  1. 12N2E0
  2. N2E0
  3. 18N2E0
  4. 14N2E0

Answer (Detailed Solution Below)

Option 4 : 14N2E0

Quantum Mechanics Question 1 Detailed Solution

Explanation:

 En=nE0(given)

Case-1-Initial ground state energy without polarization

F1 Teaching Arbaz 23-10-23 D13

According to Pauli Exclusion principle, only two electrons filled in one state.

  • Initial ground state energy Ei=2×0+2×E0+2×2E0+2×3E0++2×(N22)E0
  • Ei=2E0[1+2+3++N22]
  • Now, [1+2+3+N]=N(N+1)2
  • [1+2+3+N22]=(N22)(N2)2
  • Ei=2E0×(N22)(N2)2=N2E04NE02

 

Case-2-Final ground state energy after polarization

F1 Teaching Arbaz 23-10-23 D14

After polarization, only one electron filled in the state.

  • Ef=1×0+1×E0+1×2E0+1×3E0+...+1×(N1)E0
  • Ef=E0[1+2+3++(N1)]
  • [1+2+3+N]=N(N+1)2
  • [1+2+3++(N1)=N(N1)2
  • Ef=N2E02NE02

 

The change in ground state energy is EfEi=N2E02NE02N2E04+NE02=N2E04

So, the correct answer is 14N2E0.

Quantum Mechanics Question 2:

At t = 0 , the wavefunction of an otherwise free particle confined between two infinite walls at x = 0 and x = L is ψ(x, t = 0) = 2L(sinπxLsin3πxL). Its wave function at a later time t=mL24πh is

  1. 2L(sinπxLsin3πxL)eiπ/6
  2. 2L(sinπxL+sin3πxL)eiπ/6       
  3. 2L(sinπxLsin3πxL)eiπ/8  
  4. 2L(sinπxL+sin3πxL)eiπ/8

Answer (Detailed Solution Below)

Option 4 : 2L(sinπxL+sin3πxL)eiπ/8

Quantum Mechanics Question 2 Detailed Solution

ψ(x, t = 0) = (2LsinπxL2Lsin3πxL)

ψ(x,t=0)=|φ1|φ3

ψ(x,t)=|φ1eiEtt - |φ3eiE3t

E1=π222mL2E3 = 9π222mL2t=mL24π

ψ(x,t)=|φ1eiπ8|φ3e9iπ8 = eiπ8(|φ1|φ3eiπ)

=eiπ8(|φ1+|φ3)=eiπ8(2LsinπxL+2Lsin3πxL)

Quantum Mechanics Question 3:

A hydrogen atom is in the state ψ=821ψ20037ψ310+421ψ321, where n, l, m in ψnlm denote the principle orbit and magnetic quantum numbers, respectively. What is the expectation value of L2 in units of 22 ?

  1. 2
  2. 4
  3. 8
  4. 1

Answer (Detailed Solution Below)

Option 2 : 4

Quantum Mechanics Question 3 Detailed Solution

Explanation:

We have ψ=821ψ20037ψ310+421ψ321

Now <ψ|ψ> =1. Hence normalized.

Now we have to find the < L2> = 821<ψ200|L2|ψ200>+37<ψ310|L2|ψ310>+421<ψ321|L2|ψ321> .

Now using the relation that L2ψ=l(l+1)2ψ, we get:

\(=0+\frac{6}{7} \hbar^2 + \frac{8}{7} \hbar^2 = 2 \hbar^2 = 4\times\frac{\hbar^2}{2}\).

So the correct option is option 2).

Quantum Mechanics Question 4:

A two-dimensional square rigid box of side l contains 7 non-interacting electrons at T= 0K. The mass of the electron is m. The ground state energy of the system of electrons in units of π222ml2 is?

  1. 32
  2. 24
  3. 14
  4. 7

Answer (Detailed Solution Below)

Option 1 : 32

Quantum Mechanics Question 4 Detailed Solution

Explanation:

WE are given a 2-dimensional box of length l.

There are electrons in it of mass m.

We have to find the ground state energy of 7 electrons.

So, we know that in 2-dimensional box energy eigen value is given by:

Enx,ny=(nx2+ny2)π222ml2

For the ground state energy of 7 electrons the arrangement can be:

E=2×E1,1+2×E2,1+2×E1,2+1×E2,2 .

hence the energy would be:

E=2×2π222ml2+2×5π222ml2+2×5π222ml2+1×8π222ml2.

Simplifying it a bit we get:

E=32π222ml2.

Hence the correct option is option1).

Quantum Mechanics Question 5:

Consider an elastic scattering of particles in l=0 states. If the corresponding phase shift is δ0 is 900and magnitude of the incident wave vector is equal to 3πfm1, then the total scattering cross section in units of fm-2 is? (Correct up to 2 decimal places)

  1. 1.32
  2. 1.34
  3. 1.33
  4. 1.35

Answer (Detailed Solution Below)

Option 3 : 1.33

Quantum Mechanics Question 5 Detailed Solution

Explanation:

 We have been given with δ0=900=π2and wavevector is 3πfm1

The total scattering cross-section for particle at l=0 states is given as :

σ=4πk2sin2δ0. Putting all the values given in the above expression we get:

σ==4π3πfm2=1.33fm2.

The correct option is option 3).

Quantum Mechanics Question 6:

 σx,σy and σz are the Pauli matrices. The expression 3σxσy+5σyσx is equal to?

  1. iσz
  2. 2iσz
  3. 2iσz
  4. iσz

Answer (Detailed Solution Below)

Option 2 : 2iσz

Quantum Mechanics Question 6 Detailed Solution

Explanation:

 The commutation and anti-commutation relations of Pauli matrices are given as:

[σi,σj]=2iϵijkσk,[σi,σj]a=2Iδij , where a subscript is for anti-commutation.

So, using the above relation we get:

σiσj=δijI+iϵijkσk .

So, using the above relation we can write:

σxσy=iσz,σyσx=iσz .

Putting these in the final expression we get:

3σxσy+5σyσx=3iσz5iσz=2iσz .

The correct option is option 2).

Quantum Mechanics Question 7:

If S1 and S2 are the spin operators of the two electrons of a He atom, the value of <S1S2> for the ground state is ?

  1. 24
  2. 322
  3. 342
  4. 0

Answer (Detailed Solution Below)

Option 3 : 342

Quantum Mechanics Question 7 Detailed Solution

Explanation:

We have two electrons hence the total spin will be: S=S1+S2 .

Now,  SS=(S1+S2)(S1+S2) .

Therefore S2=S12+S22+2S1S2.

Taking the expectation values on both the sides we get:

\( < \vec{S}_1 \cdot \vec{S}_2> = \frac{1}{2} ( -< S_1^2> -< S_2^2> ) \).

We know that \( = s_1(s_1 + 1) \hbar^2 , = s_2(s_2 + 1) \hbar^2, = s(s + 1) \hbar^2 \).

Also, we know that s1=s2=12, as it is for electrons so for ground state the total spin will be s=0.

Hence putting all these in the above expression for expectation value we get:

<S1S2>=22(022(12+1))=324.

The correct option is option 3).

Quantum Mechanics Question 8:

A two-state quantum system has energy eigenvalues is ±ϵ corresponding to the normalized states |ψ±>. At time t=0, the system is in quantum state 12(|ψ+>+|ψ>). The probability that the system will be in the same state at t=h/6ϵ is

  1. 0.2
  2. 0.25
  3. 0.3
  4. 0.5

Answer (Detailed Solution Below)

Option 2 : 0.25

Quantum Mechanics Question 8 Detailed Solution

Explanation:

At t=0 we have |ϕ>=12(|ψ+>+|ψ>)

Now at some other time we will have the state evolved as |ϕ1>=12(|ψ+>eiϵt+|ψ>eiϵt).

If t=h/6ϵ we have |ϕ1>=12(|ψ+>eiπ3+|ψ>eiπ3).

Now in order to find the probability that this state will appear after the above stated time is;

|<ϕ1|ϕ>|2=|eiπ/3+eiπ/32|2=|cos(π3)|2=14=0.25.

We have used the property here that <ψ+|ψ>=0,<ψ|ψ+>=0,<ψ+|ψ+>=<ψ|ψ>=1.

The correct option is option 2).

Quantum Mechanics Question 9:

Consider potential U(r)=U0eαrr. Both α and U0 are constants. According to first Born approximation, the elastic scattering amplitude calculated with U(r) for momentum transfer q and α0 is proportional to?

  1. q
  2. q2
  3. q1
  4. q2

Answer (Detailed Solution Below)

Option 2 : q2

Quantum Mechanics Question 9 Detailed Solution

Explanation:

For α0 , we have columbic potential.

For this type of potential, we have σ(θ)cosec4θ4 ,

which implies that f(θ)cosec4θ4 . .

Also, momentum transfer is given as q=2ksinθ2.

 Hence, f(θ)1q2.

The correct option is option 2).

Quantum Mechanics Question 10:

Let x^ and p^ denote position and momentum operators obeying the commutation relation [x^,p^] = ih. If |x denotes an eigenstate of x^ corresponding to the eigenvalue x, then eiap^/h|x is

  1. an eigenstate of x^ corresponding to the eigenvalue x
  2. an eigenstate of x^ corresponding to the eigenvalue (x + a)
  3. an eigenstate of x^ corresponding to the eigenvalue (x − a)
  4. not an eigenstate of x^

Answer (Detailed Solution Below)

Option 3 : an eigenstate of x^ corresponding to the eigenvalue (x − a)

Quantum Mechanics Question 10 Detailed Solution

Concept:

The momentum operator is given by

p = - ih x

where h is the Plank constant.

Calculation:

eiaPh |x>

= [n=01n!(iaPh)n ]|x>

[n=01n!(iaPh)n]h|x>

= |x> - a∇|x> + 12! (a∇)2|x> ... = |x-a>

X|x-a> = (x-a)|x-a>

The correct answer is an option (3).

Get Free Access Now
Hot Links: teen patti all game teen patti refer earn teen patti all games teen patti star teen patti rummy 51 bonus