Theorems of Integral Calculus MCQ Quiz in தமிழ் - Objective Question with Answer for Theorems of Integral Calculus - இலவச PDF ஐப் பதிவிறக்கவும்

Last updated on Mar 22, 2025

பெறு Theorems of Integral Calculus பதில்கள் மற்றும் விரிவான தீர்வுகளுடன் கூடிய பல தேர்வு கேள்விகள் (MCQ வினாடிவினா). இவற்றை இலவசமாகப் பதிவிறக்கவும் Theorems of Integral Calculus MCQ வினாடி வினா Pdf மற்றும் வங்கி, SSC, ரயில்வே, UPSC, மாநில PSC போன்ற உங்களின் வரவிருக்கும் தேர்வுகளுக்குத் தயாராகுங்கள்.

Latest Theorems of Integral Calculus MCQ Objective Questions

Top Theorems of Integral Calculus MCQ Objective Questions

Theorems of Integral Calculus Question 1:

30πsin3θdθ=_________

Answer (Detailed Solution Below) 4

Theorems of Integral Calculus Question 1 Detailed Solution

0πsin3θdθ=I

0π(1cos2θ)sinθdθ, let cosθ = t

⇒ -sinθ dθ = dt,

At θ = 0, t = cos 0 = 1

θ = π, t = cosπ = -1

I=1+1(1t2)dt=[tt33]11

⇒ I = 4/3

∴ 3I = 4

Theorems of Integral Calculus Question 2:

cosx1cosx.dx

A. c - cosec x- cot x - x
B. c-cosec x+ cot x+ x
C. c-cosec x +cot x-x
D. c+ cosec x+ cot x+ x

  1. A
  2. B
  3. C
  4. D

Answer (Detailed Solution Below)

Option 1 : A

Theorems of Integral Calculus Question 2 Detailed Solution

Explanation:

cosx1cosx.dx = cosx1cosx × 1+cosx1+cosxdx

cosx(1+cosx)1cos2xdx = cosx + cos2xsin2xdx
 =(cosxsin2x + cos2xsin2x)dx=(1sinx×cosxsinx×cos2xsin2x)dx
 =(𝑐𝑜𝑠𝑒𝑐𝑥.𝑐𝑜𝑡𝑥+cot2𝑥)𝑑x=(𝑐𝑜𝑠𝑒𝑐𝑥.𝑐𝑜𝑡𝑥+𝑐𝑜𝑠𝑒𝑐2𝑥1)𝑑x=𝑐𝑜𝑠𝑒𝑐𝑥.𝑐𝑜𝑡𝑥dx + 𝑐𝑜𝑠𝑒𝑐2𝑥 𝑑x + 1.dx
 𝑐𝑜𝑠𝑒𝑐2𝑥.𝑑𝑥=cot𝑥+c and 1𝑑𝑥=𝑥+c
∴ 𝐼=𝑐𝑜𝑠𝑒𝑐𝑥cot𝑥𝑥+c  =𝑐𝑐𝑜𝑠𝑒𝑐𝑥cot𝑥x

Theorems of Integral Calculus Question 3:

11snxdx
A. tan x + sec x +c
B. tan x sec x +c
C. tan x cot x +c
D. tan x + cot x +c

  1. A
  2. B
  3. C
  4. D

Answer (Detailed Solution Below)

Option 1 : A

Theorems of Integral Calculus Question 3 Detailed Solution

Concept:

Integration Formulas:

sec2xdx=tanx+C

secxtanxdx=secx+c

Analysis:

Multiply and divide the given equation by (1 + sin x).

dx1sinx×1+sinx1+sinxdx=1+sinx1sin2xdx

Since  1 - sin2x = cos2x, the above equation can be written as:

=1+sinxcos2xdx

=1cos2xdx+sinxcos2xdx

=sec2xdx+secxtanxdx

=tanx+secx+C

Theorems of Integral Calculus Question 4:

The value of ex+exexexdx is equal to –

  1. tan1(exex)
  2. log(ex+ex)
  3. log(exex)
  4. log(exex)

Answer (Detailed Solution Below)

Option 4 : log(exex)

Theorems of Integral Calculus Question 4 Detailed Solution

We know that f(x)f(x)dx=logf(x)+C

In the given problem f(x)=exex

We know that ddx(exex)=(ex+ex)

ex+exexexdx=logf(x)=log(exex)

Theorems of Integral Calculus Question 5:

For the function f(x) = x2e-x, where x ∈ [0,2]; the maximum value occurs when x is equal to

  1. 2
  2. 1
  3. 0
  4. -1

Answer (Detailed Solution Below)

Option 1 : 2

Theorems of Integral Calculus Question 5 Detailed Solution

f(x) = x2e-x

fI(x) = x2(-e-x) + e-x × 2x

⇒ fI(x) = e-x(2x-x2)

Putting fI(x) = 0

⇒ e-x (2x – x2) = 0

x(2-x) = 0

⇒ x = 0 or x = 2

∴ x = 0 & x = 2 are the stationary points

fII(x) = e-x(2 - 2x) + (2x – x2) (-e-x)

= e-x (x2 – 4x + 2)

At x = 0, fII(0) = 2 > 0

∴ At x = 2, we have maximum value of f(x).

Theorems of Integral Calculus Question 6:

 The orthogonal trajectories of the given family of curves y=cx2k  is given by

  1. x2 + cy2 = constant
  2. x2 + ky2 = constant
  3. kx2 + y2 = constant
  4. x2 – ky2 = constant

Answer (Detailed Solution Below)

Option 4 : x2 – ky2 = constant

Theorems of Integral Calculus Question 6 Detailed Solution

Explanation:

Then given family of curves is

y=cx2k---(i)

Let us first find the differential equation satisfied by the family (i).

For this, we differentiate (i). w.r.to x 

∴ dydx=2ckx2k1

∴ The differential equation of the orthogonal trajectories will be obtained by replacing dydx by dxdy.

⇒ Orthogonal trajectories are given by:

dxdy=2ckx2k1

⇒ dxdy=2ckx2kx=2kyx

⇒ x dx - 2 k y dy = 0

⇒ 12x22k12y2 = constant

⇒ x2 - ky2 = constant

Hence Option(4) is the correct answer.

Theorems of Integral Calculus Question 7:

If x = -1 and x = 2 are extreme points of f(x) = a log |x| + βx2 + x then

  1. α = -6, β = -½
  2. α = 2, β = -½
  3. α = 2, β = ½
  4. α = -6, β = ½

Answer (Detailed Solution Below)

Option 2 : α = 2, β = -½

Theorems of Integral Calculus Question 7 Detailed Solution

(f'(x)) = 0

a/x + 2bx +1= 0

at  x=-1,  -a - 2b + 1 = 0

a + 2b = 1 ..........(1)

At x=2,  a/2 + 4b + 1 = 0

a + 8b = -2 ..........(2)

subtracting (1) & (2),   b=-1/2

=> a=2

Theorems of Integral Calculus Question 8:

The value of the integral π2π2(xcosx)dx is

Answer (Detailed Solution Below) 0

Theorems of Integral Calculus Question 8 Detailed Solution

The given function is odd function.

π2π2xcosxdx=0

Theorems of Integral Calculus Question 9:

limxxsinxx+cosx is equal to

Answer (Detailed Solution Below) 1

Theorems of Integral Calculus Question 9 Detailed Solution

limxxsinxx+cosx=limx1sinxx1+cosxx=101+0=1

Theorems of Integral Calculus Question 10:

Consider the function f(x)=x3+1x+1, slope of the tangent at x = 2 for the graph of f(x) is _____.

Answer (Detailed Solution Below) 11.70 - 11.8

Theorems of Integral Calculus Question 10 Detailed Solution

f(x)=x3+1x+1f(x)=3x21x2f(2)=3×22122=11.75

Get Free Access Now
Hot Links: teen patti bliss teen patti - 3patti cards game downloadable content teen patti plus teen patti master 2023 teen patti star login