Real and Imaginary parts MCQ Quiz in தமிழ் - Objective Question with Answer for Real and Imaginary parts - இலவச PDF ஐப் பதிவிறக்கவும்

Last updated on Mar 18, 2025

பெறு Real and Imaginary parts பதில்கள் மற்றும் விரிவான தீர்வுகளுடன் கூடிய பல தேர்வு கேள்விகள் (MCQ வினாடிவினா). இவற்றை இலவசமாகப் பதிவிறக்கவும் Real and Imaginary parts MCQ வினாடி வினா Pdf மற்றும் வங்கி, SSC, ரயில்வே, UPSC, மாநில PSC போன்ற உங்களின் வரவிருக்கும் தேர்வுகளுக்குத் தயாராகுங்கள்.

Latest Real and Imaginary parts MCQ Objective Questions

Top Real and Imaginary parts MCQ Objective Questions

Real and Imaginary parts Question 1:

If x + iy = \(\rm 2+3i\over 1-i\), find x and y

  1. x = \({1\over2}\) and y = \({5\over2}\)
  2. x = \(-{1\over2}\) and y = \({5\over2}\)
  3. x = \({1\over2}\) and y = \(-{5\over2}\)
  4. x = \(-{1\over2}\) and y = \(-{5\over2}\)

Answer (Detailed Solution Below)

Option 2 : x = \(-{1\over2}\) and y = \({5\over2}\)

Real and Imaginary parts Question 1 Detailed Solution

Calculation:

x + iy = \(\rm 2+3i \over 1-i\)

x + iy = \(\rm {2+3i \over 1-i}\times{1+i\over1+i}\)

x + iy = \(\rm 2+5i-3\over 1^2-(i)^2\)

x + iy = \(\rm -{1\over2}+{5\over2}i\)

∴ x = \(-{1\over2}\) and y = \(5\over2\)

Real and Imaginary parts Question 2:

If \(\frac{(1 + i)x - 2i}{3 + i}+\frac{(2-3i)y+i}{3 - i}= i\) then the real values of x and y are given by

  1. x = -3, y = -1
  2. x = 3, y = - 1
  3. x = 3, y = 1
  4. x = 1, y = -3

Answer (Detailed Solution Below)

Option 2 : x = 3, y = - 1

Real and Imaginary parts Question 2 Detailed Solution

Concept:

1. A complex number (Z):  Complex number is the combination of a real number and an imaginary number. It is given by

Z = x + iy, where 'x' and 'y' are the real and imaginary parts of Z and

i = √-1 or i2 = -1

Re(Z) = x and Img(Z) = y

2. Two complex numbers will be equal if their real and imaginary part are equal.

Calculation:

Given that,

\(\frac{(1 + i)x - 2i}{3 + i}+\frac{(2-3i)y+i}{3 - i}= i\)

\(\Rightarrow\ \frac{[(1 + i)x - 2i](3 \ -\ i)\ +\ [(2-3i)y+i](3+i)}{9\ -\ i^2}\ =\ i\)

⇒(1 + i)(3x - ix) - 2i(3 - i) + (2 - 3i)(3y + iy) + i(3 + i) = 10i

⇒ 3x + 3xi - ix - i2x - 6i + 2i2 + 6y - 9iy + 2iy - 3yi2 + 3i + i2 = 10i

We know that,  i2 = -1

⇒ 3x + 2xi + x - 6i - 2 + 6y - 7yi + 3y + 3i -1 = 10i  

⇒ 4x + 9y − 3 + 2xi − 7yi − 13i = 0

⇒ 4x + 9y − 3 + (2x − 7y − 13)i = 0

On comparing the real part and imaginary part, we get

4x + 9y − 3 = 0     …… (1)

2x − 7y − 13 = 0  …… (2)

On solving both equations, we get

x = 3 and y = −1

Hence, the value of x, y is 3, −1.

Real and Imaginary parts Question 3:

If z = -z̅, then which one of the following is correct?

  1. The real part of z is zero.
  2. The imaginary part of z is zero.
  3. The real part of z is equal to imaginary part of z.
  4. The sum of real and imaginary parts of z is z.

Answer (Detailed Solution Below)

Option 1 : The real part of z is zero.

Real and Imaginary parts Question 3 Detailed Solution

Concept:

Let z = x + iy be any complex number. 

Conjugate of z: \(\rm \bar{z} = x - iy\) 

 

Calculations:

Let z = x + iy be any complex number. 

\(\rm \bar{z} = x - iy\)

Given, z = -z̅

⇒ (x + iy) = - (x - iy) 

⇒ x + iy = - x + iy 

⇒ 2x = 0

i.e The real part of z is zero.

Hence, If z = -z̅, then the real part of z is zero.

 

Real and Imaginary parts Question 4:

If \(z \neq 1\) and \(\displaystyle \frac{z^{2}}{z-1}\) is real, then the point represented by the complex number \(\mathrm{z}\) lies:

  1. either on the real axis or on a circle passing through the origin.
  2. on a circle with centre at the origin.
  3. either on the real axis or on a circle not passing through the origin.
  4. on the imaginary axis

Answer (Detailed Solution Below)

Option 1 : either on the real axis or on a circle passing through the origin.

Real and Imaginary parts Question 4 Detailed Solution

Calculation

\( z \neq 1 \) and \( \dfrac{z^{2}}{z-1} \) is real so imaginary Part is 0.

Let's say \( z = x+iy \)

⇒ \( \dfrac{z^{2}}{z-1} \) \( = \dfrac{(x+iy)^{2}}{x+iy-1} = \dfrac{x^{2}-y^{2}+2ixy}{(x-1)+iy} \)

On rationalizing

\( \Rightarrow \dfrac{x^{2}-y^{2}+2ixy}{(x-1)+iy} \times \dfrac{(x-1)-iy}{(x-1)-iy} \)

\( \Rightarrow \dfrac{(x^{2}-y^{2}+2ixy)((x-1)-iy)}{(x-1)^{2}+y^{2}} \)

(Imaginary Part \( = 0 \))\( \Rightarrow 2xy(x-1)-x^{2}y+y^{3} = 0 \)

\( \Rightarrow 2x^{2}y-2xy-x^{2}y+y^{3} = 0 \)

\( \Rightarrow x^{2}y+y^{3}-2xy = 0 \)

\( \Rightarrow y(x^{2}+y^{2}-2x) = 0 \)

\( \Rightarrow y = 0 \) or \( x^{2}+y^{2}-2x = 0 \)

\( \Rightarrow \text{Real axis Line}: y=0 \quad \text{or} \quad \text{Circle}: x^2+y^2-2x=0 \Rightarrow (x-1)^2+(y-0)^2=1^2 \)

Hence option 1 is correct

Real and Imaginary parts Question 5:

4x + i(2x - y) = 8 - 4i , then x, y is 

  1. 2, 6
  2. 2, 8
  3. 8, 2
  4. 6, 2

Answer (Detailed Solution Below)

Option 2 : 2, 8

Real and Imaginary parts Question 5 Detailed Solution

Concept:

Equality of complex numbers.

Two complex numbers z1 = x1 + iy1 and z2 = x2 + iy2 are equal if and only if x1 = x2 and y1 = y2

Or Re (z1) = Re (z2and Im (z1) = Im (z2).

Calculations:

Given: 4x + i(2x - y) = 8 - 4i

Equating real part of the complex number 

⇒ 4x = 8

⇒ x = 2

Equating imaginary part of the complex number  

⇒ 2x - y = -4

\(⇒ 2\times2-y=-4\)

\(⇒ y=8\)

\(\therefore x=2 , y=8\)

Hence , option 2 is correct 

Real and Imaginary parts Question 6:

If a complex number is purely imaginary so find the value of x. The complex number is (x2 - 5x + 6) + i √17.

  1. 2, 3
  2. 3, 5
  3. 4, 2
  4. None of these

Answer (Detailed Solution Below)

Option 1 : 2, 3

Real and Imaginary parts Question 6 Detailed Solution

Concept:

A complex number z = x + iy

Real part of z = x, Imaginary part of z = y

If the Complex number is Purely imaginary so we can say that the Real part of a complex number is Zero.

If the Complex number is Purely real so we can say that the Imaginary part of a complex number is Zero.

Calculation:

Given: (x2 - 5x + 6) + i √17

For purely imaginary complex number real part is 0

So, x2 - 5x + 6 = 0

x2 - 3x - 2x + 6 = 0

x(x - 3) - 2(x - 3) = 0

(x - 3)(x - 2) = 0

Here, x = 2, 3

Real and Imaginary parts Question 7:

Find the real and imaginary part of the complex number \(\rm z=\frac {1-i}{1+i}\)

  1. 1, 1
  2. -1, 1
  3. 0, 1
  4. 0, -1

Answer (Detailed Solution Below)

Option 4 : 0, -1

Real and Imaginary parts Question 7 Detailed Solution

Concept:

Equality of complex numbers.

Two complex numbers z1 = x1 + iy1 and z2 = x2 + iy2 are equal if and only if x1 = x2 and y1 = y2

Or Re (z1) = Re (z2and Im (z1) = Im (z2).

 

Calculations:

Given complex number 

\(\Rightarrow z=\frac{1-i}{1+i}\)

Multiplying the numerator and denominator with 1 - i

\(\Rightarrow z=\frac{1-i}{1+i}\times \frac{1-i}{1-i}\)

\(\Rightarrow z=\frac{(1-i)(1-i)}{1-(i.i)}\)

\(=\frac{1+i^{2}-2i}{1+1}\)

\(=\frac{1-1-2i}{2}\)

= -i

So, z = 0 - i

∴ Re (z) = 0 and Im (z) = -1

Hence,option 4 is correct  

Real and Imaginary parts Question 8:

What is the value of \(\sqrt{12+5 i}+\sqrt{12-5 i}\) where \(i=\sqrt{-1}\) ?

  1. 24
  2. 25
  3. 5√2
  4. More than one of the above
  5. None of the above

Answer (Detailed Solution Below)

Option 3 : 5√2

Real and Imaginary parts Question 8 Detailed Solution

Formula Used: 

(a + b) (a - b) = a2 - b2

i2 = -1

Calculation:

Let x =\(\sqrt{12+5 i}+\sqrt{12-5 i}\), where \(i=\sqrt{-1}\)

Squaring both sides,

x2\({12+5 i}+{12-5 i} +2\sqrt{12+5 i}\sqrt{12-5 i}\)

x2\({24} +2\sqrt{144+25}\)

x2 = \({24} +2\sqrt{169}\)

x2 = \(24 +26\)

x2 = \(50\)

x = \(5\sqrt 2\)

Real and Imaginary parts Question 9:

If (a + ib)(c + id)(e + if)(g + ih) = A + iB, then (a2 + b2(c2 + d2)(e2 + f2)(g2 + h2) is equal to

  1. A2 - B2
  2. A2 + B2
  3. A4 + B4
  4. A4 - B4

Answer (Detailed Solution Below)

Option 2 : A2 + B2

Real and Imaginary parts Question 9 Detailed Solution

Concept:

|z1.z2| = |z1|.|z2|

If z = x + iy, then |z| = √(x2 + y2)

Calculation:

Given, 

Now taking modulus both sides we get,

|(a + ib)(c + id)(e + if)(g + ih)| = |A + iB|

⇒ |(a + ib)|.|(c + id)|.|(e + if)|.|(g + ih)| = |A + iB|

⇒ √(a2 + b2) .√(c2 + d2​) .√(e2 + f2​) .√(g2 + h2​) = √(A2 + B2​) 

Squaring both sides,

(a2 + b2(c2 + d2)(e2 + f2)(g2 + h2) = A2 + B2

∴ The correct answer is option (2).

Real and Imaginary parts Question 10:

If \(z = \left(\frac{\sqrt{3}}{2}+\frac{i}{2}\right)^5 + \left(\frac{\sqrt{3}}{2}-\frac{i}{2}\right)^ 5\), then

  1. Re(z) = 0
  2. lm(z) = 0
  3. Re(z) > 0, lm(z) = 0
  4. Re(z) > 0, lm(z) < 0

Answer (Detailed Solution Below)

Option 2 : lm(z) = 0

Real and Imaginary parts Question 10 Detailed Solution

Concept:

cos θ + i sin θ = e

cos(π/6) = √3/2, sin(π/6) = 1/2

cos(5π/6) = -√3/2, sin(5π/6) = 1/2

Calculation:

Given, \(z = \left(\frac{\sqrt{3}}{2}+\frac{i}{2}\right)^5 + \left(\frac{\sqrt{3}}{2}-\frac{i}{2}\right)^5\)

⇒ \(z = \left(cos {π \over 6}+i sin {π \over 6}\right)^5 + \left(\cos {π \over 6}-i sin {π \over 6}\right)^5\)

⇒ \(z = \left(e^{{iπ \over 6}} \right)^5 + \left(e^{-{iπ \over 6}}\right)^5\)

⇒ \(z = \left(e^{{5π i\over 6}} \right) + \left(e^{-{5πi \over 6}}\right)\)

⇒ \(z = \left(cos {5π \over 6}+i sin {5π \over 6}\right) + \left(\cos {5π \over 6}-i sin {5π \over 6}\right)\)

⇒ \(z = 2 \cos(\frac{5\pi}{6}) + 0i\)

⇒ \(z = 2 \cos(\pi - \frac{\pi}{6}) + 0i\)

⇒ \(z = - 2 \cos(\frac{\pi}{6}) + 0i\)

⇒ \(z = - 2\times \frac{\sqrt3}{2} + 0i\)

⇒ \(z = -\sqrt{3} +0i\)

⇒ Im(z) = 0 and Re(z) < 0

∴ The correct answer is option (2).

Get Free Access Now
Hot Links: teen patti casino download teen patti master downloadable content teen patti noble teen patti live