Real and Imaginary parts MCQ Quiz in தமிழ் - Objective Question with Answer for Real and Imaginary parts - இலவச PDF ஐப் பதிவிறக்கவும்
Last updated on Mar 18, 2025
Latest Real and Imaginary parts MCQ Objective Questions
Top Real and Imaginary parts MCQ Objective Questions
Real and Imaginary parts Question 1:
If x + iy = \(\rm 2+3i\over 1-i\), find x and y
Answer (Detailed Solution Below)
Real and Imaginary parts Question 1 Detailed Solution
Calculation:
x + iy = \(\rm 2+3i \over 1-i\)
x + iy = \(\rm {2+3i \over 1-i}\times{1+i\over1+i}\)
x + iy = \(\rm 2+5i-3\over 1^2-(i)^2\)
x + iy = \(\rm -{1\over2}+{5\over2}i\)
∴ x = \(-{1\over2}\) and y = \(5\over2\)
Real and Imaginary parts Question 2:
If \(\frac{(1 + i)x - 2i}{3 + i}+\frac{(2-3i)y+i}{3 - i}= i\) then the real values of x and y are given by
Answer (Detailed Solution Below)
Real and Imaginary parts Question 2 Detailed Solution
Concept:
1. A complex number (Z): Complex number is the combination of a real number and an imaginary number. It is given by
Z = x + iy, where 'x' and 'y' are the real and imaginary parts of Z and
i = √-1 or i2 = -1
Re(Z) = x and Img(Z) = y
2. Two complex numbers will be equal if their real and imaginary part are equal.
Calculation:
Given that,
\(\frac{(1 + i)x - 2i}{3 + i}+\frac{(2-3i)y+i}{3 - i}= i\)
\(\Rightarrow\ \frac{[(1 + i)x - 2i](3 \ -\ i)\ +\ [(2-3i)y+i](3+i)}{9\ -\ i^2}\ =\ i\)
⇒(1 + i)(3x - ix) - 2i(3 - i) + (2 - 3i)(3y + iy) + i(3 + i) = 10i
⇒ 3x + 3xi - ix - i2x - 6i + 2i2 + 6y - 9iy + 2iy - 3yi2 + 3i + i2 = 10i
We know that, i2 = -1
⇒ 3x + 2xi + x - 6i - 2 + 6y - 7yi + 3y + 3i -1 = 10i
⇒ 4x + 9y − 3 + 2xi − 7yi − 13i = 0
⇒ 4x + 9y − 3 + (2x − 7y − 13)i = 0
On comparing the real part and imaginary part, we get
4x + 9y − 3 = 0 …… (1)
2x − 7y − 13 = 0 …… (2)
On solving both equations, we get
x = 3 and y = −1
Hence, the value of x, y is 3, −1.
Real and Imaginary parts Question 3:
If z = -z̅, then which one of the following is correct?
Answer (Detailed Solution Below)
Real and Imaginary parts Question 3 Detailed Solution
Concept:
Let z = x + iy be any complex number.
Conjugate of z: \(\rm \bar{z} = x - iy\)
Calculations:
Let z = x + iy be any complex number.
⇒\(\rm \bar{z} = x - iy\)
Given, z = -z̅
⇒ (x + iy) = - (x - iy)
⇒ x + iy = - x + iy
⇒ 2x = 0
i.e The real part of z is zero.
Hence, If z = -z̅, then the real part of z is zero.
Real and Imaginary parts Question 4:
If \(z \neq 1\) and \(\displaystyle \frac{z^{2}}{z-1}\) is real, then the point represented by the complex number \(\mathrm{z}\) lies:
Answer (Detailed Solution Below)
Real and Imaginary parts Question 4 Detailed Solution
Calculation
\( z \neq 1 \) and \( \dfrac{z^{2}}{z-1} \) is real so imaginary Part is 0.
Let's say \( z = x+iy \)
⇒ \( \dfrac{z^{2}}{z-1} \) \( = \dfrac{(x+iy)^{2}}{x+iy-1} = \dfrac{x^{2}-y^{2}+2ixy}{(x-1)+iy} \)
On rationalizing
\( \Rightarrow \dfrac{x^{2}-y^{2}+2ixy}{(x-1)+iy} \times \dfrac{(x-1)-iy}{(x-1)-iy} \)
\( \Rightarrow \dfrac{(x^{2}-y^{2}+2ixy)((x-1)-iy)}{(x-1)^{2}+y^{2}} \)
(Imaginary Part \( = 0 \))\( \Rightarrow 2xy(x-1)-x^{2}y+y^{3} = 0 \)
\( \Rightarrow 2x^{2}y-2xy-x^{2}y+y^{3} = 0 \)
\( \Rightarrow x^{2}y+y^{3}-2xy = 0 \)
\( \Rightarrow y(x^{2}+y^{2}-2x) = 0 \)
\( \Rightarrow y = 0 \) or \( x^{2}+y^{2}-2x = 0 \)
\( \Rightarrow \text{Real axis Line}: y=0 \quad \text{or} \quad \text{Circle}: x^2+y^2-2x=0 \Rightarrow (x-1)^2+(y-0)^2=1^2 \)
Hence option 1 is correct
Real and Imaginary parts Question 5:
4x + i(2x - y) = 8 - 4i , then x, y is
Answer (Detailed Solution Below)
Real and Imaginary parts Question 5 Detailed Solution
Concept:
Equality of complex numbers.
Two complex numbers z1 = x1 + iy1 and z2 = x2 + iy2 are equal if and only if x1 = x2 and y1 = y2
Or Re (z1) = Re (z2) and Im (z1) = Im (z2).
Calculations:
Given: 4x + i(2x - y) = 8 - 4i
Equating real part of the complex number
⇒ 4x = 8
⇒ x = 2
Equating imaginary part of the complex number
⇒ 2x - y = -4
\(⇒ 2\times2-y=-4\)
\(⇒ y=8\)
\(\therefore x=2 , y=8\)
Hence , option 2 is correct
Real and Imaginary parts Question 6:
If a complex number is purely imaginary so find the value of x. The complex number is (x2 - 5x + 6) + i √17.
Answer (Detailed Solution Below)
Real and Imaginary parts Question 6 Detailed Solution
Concept:
A complex number z = x + iy
Real part of z = x, Imaginary part of z = y
If the Complex number is Purely imaginary so we can say that the Real part of a complex number is Zero.
If the Complex number is Purely real so we can say that the Imaginary part of a complex number is Zero.
Calculation:
Given: (x2 - 5x + 6) + i √17
For purely imaginary complex number real part is 0
So, x2 - 5x + 6 = 0
x2 - 3x - 2x + 6 = 0
x(x - 3) - 2(x - 3) = 0
(x - 3)(x - 2) = 0
Here, x = 2, 3
Real and Imaginary parts Question 7:
Find the real and imaginary part of the complex number \(\rm z=\frac {1-i}{1+i}\)
Answer (Detailed Solution Below)
Real and Imaginary parts Question 7 Detailed Solution
Concept:
Equality of complex numbers.
Two complex numbers z1 = x1 + iy1 and z2 = x2 + iy2 are equal if and only if x1 = x2 and y1 = y2
Or Re (z1) = Re (z2) and Im (z1) = Im (z2).
Calculations:
Given complex number
\(\Rightarrow z=\frac{1-i}{1+i}\)
Multiplying the numerator and denominator with 1 - i
\(\Rightarrow z=\frac{1-i}{1+i}\times \frac{1-i}{1-i}\)
\(\Rightarrow z=\frac{(1-i)(1-i)}{1-(i.i)}\)
\(=\frac{1+i^{2}-2i}{1+1}\)
\(=\frac{1-1-2i}{2}\)
= -i
So, z = 0 - i
∴ Re (z) = 0 and Im (z) = -1
Hence,option 4 is correct
Real and Imaginary parts Question 8:
What is the value of \(\sqrt{12+5 i}+\sqrt{12-5 i}\) where \(i=\sqrt{-1}\) ?
Answer (Detailed Solution Below)
Real and Imaginary parts Question 8 Detailed Solution
Formula Used:
(a + b) (a - b) = a2 - b2
i2 = -1
Calculation:
Let x =\(\sqrt{12+5 i}+\sqrt{12-5 i}\), where \(i=\sqrt{-1}\)
Squaring both sides,
x2 = \({12+5 i}+{12-5 i} +2\sqrt{12+5 i}\sqrt{12-5 i}\)
x2 = \({24} +2\sqrt{144+25}\)
x2 = \({24} +2\sqrt{169}\)
x2 = \(24 +26\)
x2 = \(50\)
x = \(5\sqrt 2\)
Real and Imaginary parts Question 9:
If (a + ib)(c + id)(e + if)(g + ih) = A + iB, then (a2 + b2) (c2 + d2)(e2 + f2)(g2 + h2) is equal to
Answer (Detailed Solution Below)
Real and Imaginary parts Question 9 Detailed Solution
Concept:
|z1.z2| = |z1|.|z2|
If z = x + iy, then |z| = √(x2 + y2)
Calculation:
Given,
Now taking modulus both sides we get,
|(a + ib)(c + id)(e + if)(g + ih)| = |A + iB|
⇒ |(a + ib)|.|(c + id)|.|(e + if)|.|(g + ih)| = |A + iB|
⇒ √(a2 + b2) .√(c2 + d2) .√(e2 + f2) .√(g2 + h2) = √(A2 + B2)
Squaring both sides,
(a2 + b2) (c2 + d2)(e2 + f2)(g2 + h2) = A2 + B2
∴ The correct answer is option (2).
Real and Imaginary parts Question 10:
If \(z = \left(\frac{\sqrt{3}}{2}+\frac{i}{2}\right)^5 + \left(\frac{\sqrt{3}}{2}-\frac{i}{2}\right)^ 5\), then
Answer (Detailed Solution Below)
Real and Imaginary parts Question 10 Detailed Solution
Concept:
cos θ + i sin θ = eiθ
cos(π/6) = √3/2, sin(π/6) = 1/2
cos(5π/6) = -√3/2, sin(5π/6) = 1/2
Calculation:
Given, \(z = \left(\frac{\sqrt{3}}{2}+\frac{i}{2}\right)^5 + \left(\frac{\sqrt{3}}{2}-\frac{i}{2}\right)^5\)
⇒ \(z = \left(cos {π \over 6}+i sin {π \over 6}\right)^5 + \left(\cos {π \over 6}-i sin {π \over 6}\right)^5\)
⇒ \(z = \left(e^{{iπ \over 6}} \right)^5 + \left(e^{-{iπ \over 6}}\right)^5\)
⇒ \(z = \left(e^{{5π i\over 6}} \right) + \left(e^{-{5πi \over 6}}\right)\)
⇒ \(z = \left(cos {5π \over 6}+i sin {5π \over 6}\right) + \left(\cos {5π \over 6}-i sin {5π \over 6}\right)\)
⇒ \(z = 2 \cos(\frac{5\pi}{6}) + 0i\)
⇒ \(z = 2 \cos(\pi - \frac{\pi}{6}) + 0i\)
⇒ \(z = - 2 \cos(\frac{\pi}{6}) + 0i\)
⇒ \(z = - 2\times \frac{\sqrt3}{2} + 0i\)
⇒ \(z = -\sqrt{3} +0i\)
⇒ Im(z) = 0 and Re(z) < 0
∴ The correct answer is option (2).