Exact Differential Equations MCQ Quiz in தமிழ் - Objective Question with Answer for Exact Differential Equations - இலவச PDF ஐப் பதிவிறக்கவும்

Last updated on Apr 23, 2025

பெறு Exact Differential Equations பதில்கள் மற்றும் விரிவான தீர்வுகளுடன் கூடிய பல தேர்வு கேள்விகள் (MCQ வினாடிவினா). இவற்றை இலவசமாகப் பதிவிறக்கவும் Exact Differential Equations MCQ வினாடி வினா Pdf மற்றும் வங்கி, SSC, ரயில்வே, UPSC, மாநில PSC போன்ற உங்களின் வரவிருக்கும் தேர்வுகளுக்குத் தயாராகுங்கள்.

Latest Exact Differential Equations MCQ Objective Questions

Top Exact Differential Equations MCQ Objective Questions

Exact Differential Equations Question 1:

Consider the following second order linear differential equation

d2ydx2=12x2+24x20

The Boundary conditions are: at x=0, y=5 and x=2, y=21

The value of y at x=1 is?

Answer (Detailed Solution Below) 18

Exact Differential Equations Question 1 Detailed Solution

d2ydx2=12x2+24x20

Integrating both sides w.r.t x

dydx=4x3+12x220x+c1

Again integrating both sides w.r.t x

y = -x4 + 4x3 – 10x2 + c1x + c2                                    ……….(i)

At x = 0 and y = 5

5 = c2

At x = 2, y =21

y = -x4 + 4x3 – 10x2 + c1x + c2   

21 = – 16 + 32 – 40 + 2c1 + c2

2c1 = 21 + 16 – 32 + 40 – 5

2c1 = 40

c1 = 20

y = – x4 + 4x3 – 10 x2 + 20x + 5  

Put x = 1

y = – 1 + 4 – 10 + 20 + 5

y = 18

Exact Differential Equations Question 2:

If I1and I2 are the integrating factors of the equations xy' + 2y = x and xy' - 2y = x respectively. Then I1 ×  I2 = ?

Answer (Detailed Solution Below) 1

Exact Differential Equations Question 2 Detailed Solution

Concept:

Let Mdx + Ndy = 0 be a differential equation and if My  NxN  = f(x) or constant then the integration factor is given as 

I. F = ef(x) dx

Calculation:

Given:

Consider the first differential equation:

xy+ 2y = x  y+(2x)× y = 1

I. F = ef(x) dx

I1(I.F)=e2xdx=e2.ln x=eln x2=x2

For the second differential equation:

xy 2y = x  y+(2x)× y = 1

I. F = ef(x) dx

 I2(I.F)=e2xdx=e2lnx=x2

I1×I2 = x2× x2 = 1

∴  I1 × I2 = 1

1) If the function is in x terms then the integration factor is I.F = ef(x) dx

2) If the function is in y terms then the integration factor is I.F = ef(y) dy

Exact Differential Equations Question 3:

Solution of the following differential equation xlogxdydx+y=logx2

  1. y = log x + c
  2. y=logx+clogx
  3. y = log x2 + c
  4. y=(logx)2+clogx

Answer (Detailed Solution Below)

Option 2 : y=logx+clogx

Exact Differential Equations Question 3 Detailed Solution

Leibnitz’s linear equation

dydx+py=Q

Solution is

y(I.f)=Q(I.f)dx+c

I.f.=epdx

dydx+1xlogxy=logx2xlogx=2logxxlogx=2x

pdx=1xlogxdx=ln(logx)

I.f.=epdx=eln(logx)=logx

y(logx)=2xlogxdx+c=2logx.dxx+c

y(log x) = (log x)2 + c

y=logx+Clogx

Exact Differential Equations Question 4:

The general solution of the differential equation 9yy’ + 4x = 0 is, (y=dydx,C=constant)

  1. 9x2 + 4y2 = C

  2. x29y24=C
  3. 4x2 + 9y2 = C
  4. x24y29=C

Answer (Detailed Solution Below)

Option 3 : 4x2 + 9y2 = C

Exact Differential Equations Question 4 Detailed Solution

Concept:

The general form of a differential equation is,

dydx=f(x,y) or Mdx + Ndy = 0

Where M and N are functions of x and y.

By variable separable form,

In an equation, if it is possible to collect all terms of x and dx on one side and all the terms of y and dy on the other side, then the variables are said to be separable.

After separating, integrate on both the side of the equation,

f(y)dy=ϕ(x)dx+C

Calculation:

Given,

9yy’ + 4x = 0

Where,

(y=dydx,C=constant)

9ydydx+4x=0

9ydy=4xdx

Integrating on both the side,

9ydy=(4x)dx+C1

9y22=4x22+C1

9y2+4x2=2C1

4x2+9y2=C

Hence the general solution of the given differential equation is 4x2+9y2=C

Exact Differential Equations Question 5:

For the exact differential equation,

dudx=xu22+x2u

which one of the following is the solution?

  1. u2 + 2x2 = constant
  2. xu2 + u = constant
  3. 12x2u2+2u =  constant
  4. 12ux2+2u  = constant

Answer (Detailed Solution Below)

Option 3 : 12x2u2+2u =  constant

Exact Differential Equations Question 5 Detailed Solution

Explanation:

dudx=xu22+x2u

(2 + x2u) du + (xu2) dx = 0

For exact differential, dPdx=dQdu

Q = (2 + x2u), P = (xu2)

dQdx=ddx(2+x2u) = 2ux

dPdu=ddu(xu2) = 2ux

Since dP/du = dQ/dx, hence it is an exact differential.

Thus its solution is given by:

∫Pdx + ∫terms in Q(x,y) not containing x du = C

Cxu2dx+2du=C

x2u22+2u=C

Exact Differential Equations Question 6:

The differential equation satisfying y = Ae3x+Be2x is 

  1. d2ydx2+5dydx6y=0
  2. d2ydx25dydx+6y=0
  3. d2ydx2+5dydx+6y
  4. d2ydx25dydx6y=0

Answer (Detailed Solution Below)

Option 2 : d2ydx25dydx+6y=0

Exact Differential Equations Question 6 Detailed Solution

y = Ae3x+Be2x

dydx=3Ae3x+2Be2x

d2ydx2=9Ae3x+4Be2x

Now, according to option (a)

d2ydx2+5dydx6y=9Ae3x+4Be2x+15Ae3x+10Be2xe3x+6Be2x0

Hence, option (a) is not correct.

Now, according to option (b)

d2ydx25dydx+6y=9Ae3x+4Be2x15Ae3x10Be2x+e3x+6Be2x=0

So, option (b) is the correct option.

Exact Differential Equations Question 7:

The differential equation M dx + N dy = 0 will be exact if and only if

  1. My = Nx = 0
  2. My - Nx = 0
  3. Mx + Ny = 0
  4. Mx - Ny = 0

Answer (Detailed Solution Below)

Option 2 : My - Nx = 0

Exact Differential Equations Question 7 Detailed Solution

Calculation:

Given differential equation, M dx + N dy = 0

For the differential equation to be exact, then:

My=Nx

⇒ My = Nx

⇒ My - Nx = 0

 The differential equation M dx + N dy = 0 will be exact if and only if My - Nx = 0.

The correct answer is Option 2.

Exact Differential Equations Question 8:

The solution of differential equation (x+y)2dydx=a2 is _______.

  1. (y + x) = a tan(yca)
  2. y - x = a tan(y - c)
  3. (y - x) = tan(yca)
  4. a(y - x) = tan(yca)

Answer (Detailed Solution Below)

Option 1 : (y + x) = a tan(yca)

Exact Differential Equations Question 8 Detailed Solution

Concept:

Variable Seperable Method:

Consider the first-order differential equation, 

P(y)dydx = Q(x), where Q(x) and P(y) are functions involving x and y only, respectively.

We can solve this by separating variables:

P(y)dydx = Q(x) ⇒ P(y)dy=Q(x)dx

Calculation:

Given, (x+y)2dydx=a2

Let, x + y = t

⇒ 1 + dydx = dtdx

⇒ dydx = dtdx - 1

∴ The differential equation becomes, t2(dtdx1)=a2

⇒ dtdx1=a2t2

⇒ dtdx=a2t2+1=a2+t2t2

⇒ t2a2+t2dt=dx

⇒ a2+t2a2a2+t2dt=dx

⇒ (1a2a2+t2)dt=dx

Integrating on both sides, we get:

(1a2a2+t2)dt=dx

⇒ 1dta21a2+t2dt=dx

⇒ ta2×1atan1(ta)=x+c

⇒ x + y - a tan-1(x+ya) = x + c

⇒ y - a tan-1(x+ya) = c

⇒ tan-1(x+ya) = yca

⇒ x+ya = tan(yca)

⇒ y + x = a tan(yca), where c is the constant of integration. 

∴ The solution of the given differential equation is (y + x) = a tan(yca).

The correct answer is Option 1.

Exact Differential Equations Question 9:

The steady-state temperature distribution in a square plate ABCD is governed by the 2-dimensional Laplace equation. The side AB is kept at a temperature of 100°C and the other three sides are kept at a temperature of 0°C. Ignoring the effect of discontinuities in the boundary conditions at the corners, the steady-state temperature at the center of the plate is obtained as T0°C. Due to symmetry, the steady-state temperature at the center will be same (T0°C), when any one side of the square is kept at a temperature of 100°C and the remaining three sides are kept at a temperature of 0°C. Using the principle of superposition, the value of T0 is _________ (rounded off to two decimal places).

Answer (Detailed Solution Below) 19.8 - 20.1

Exact Differential Equations Question 9 Detailed Solution

Calculation:

Laplace equation is 2ux2+2uy2=0  ...(i)

Its solution using separation of variables method is

∴ u(x, y) = (C1cos λ x + Csin λx)(C3eλy + C4-λy) ...(ii)

Let AB = CD = 1

Using u(x, 0) = 0

⇒ C3 = –C4

Using (0, y) = 0

⇒ C1 = 0

F1 ENG Priya 9-1-24 D2

Substituting constants values in equation (ii)

u(x, y) = (0 + C2 sinλx) (C3eλy - C3e-λy)

u(x, y) = asin λ x(eλy - e-λy)

Now, using u(1, y) = 0,

sin λ = 0 ⇒ λ = nπ

Hence u(x, y) = ansin(nπx)[enπyenπy]

Using u(x, 1) = 100

⇒ a1=100sinπx[eπeπ]

Using equation (iii),

u(x,y)=100sinπx[eπeπ](eπyeπy)

At mid point, ie.

u(12,12) = T0

⇒ T0=100(eπeπ)(eπ/2eπ2)

100(eπ/2+eπ/2)=1002coshπ2=502.509 = 19.928=19.83C

Exact Differential Equations Question 10:

Integrating factor of following differential equation is: (xy3 + y) dx + 2 (x2y2 + x + y4) dy = 0

  1. y
  2. x
  3. 1y
  4. None

Answer (Detailed Solution Below)

Option 1 : y

Exact Differential Equations Question 10 Detailed Solution

Concept:

In equation M dx + N dy = 0,

1. if MyNyN be function of x only = f(x) say, then e∫f(x) dx is an integrating factor.

2. if NyMyM be function of y only = F(y) say, then e∫F(y) dy is an integrating factor.

The derivative of standard function

ddxxn=nxn1

The integration of standard function

e1xdx=elog x=x

Calculation:

Given:

(xy3 + y) dx + 2 (x2y2 + x + y4) dy = 0

where, M = (xy3 + y) and N = 2 (x2y2 + x + y4

∴ 1M(NyMy)=1y(xy2+1)(2(x2y2+x+y4)y(xy3+y)y) 

1M(NyMy)=1y(xy2+1)(4xy2+23xy21)

1M(NyMy)=1y

1y is a function of y alone.

Integrating factor=e1ydy=elog y=y

Get Free Access Now
Hot Links: teen patti download apk teen patti game paisa wala teen patti real cash 2024 teen patti real cash game