Boolean Algebra MCQ Quiz in தமிழ் - Objective Question with Answer for Boolean Algebra - இலவச PDF ஐப் பதிவிறக்கவும்

Last updated on Mar 21, 2025

பெறு Boolean Algebra பதில்கள் மற்றும் விரிவான தீர்வுகளுடன் கூடிய பல தேர்வு கேள்விகள் (MCQ வினாடிவினா). இவற்றை இலவசமாகப் பதிவிறக்கவும் Boolean Algebra MCQ வினாடி வினா Pdf மற்றும் வங்கி, SSC, ரயில்வே, UPSC, மாநில PSC போன்ற உங்களின் வரவிருக்கும் தேர்வுகளுக்குத் தயாராகுங்கள்.

Latest Boolean Algebra MCQ Objective Questions

Top Boolean Algebra MCQ Objective Questions

Boolean Algebra Question 1:

According to Boolean law: A¯ = ?

  1. 0
  2. A
  3. A¯
  4. 1

Answer (Detailed Solution Below)

Option 2 : A

Boolean Algebra Question 1 Detailed Solution

Concept-

  • The branch of algebra which deals with the values of the variables in the form of the truth values true and false is called Boolean algebra.
  • True and false are usually denoted by 1 and 0 respectively.


Explanation-

If we take complement, we get negation of the variable but if we again take the complement of complemented variable, we get the same variable.

F(A)=A¯=A

Boolean Algebra Question 2:

If function f(A, B) = ∑ m(0, 1, 2, 3) is implemented using SOP form, the resultant Boolean function would be:

  1. A + B
  2. A + B̅
  3. AB
  4. 1

Answer (Detailed Solution Below)

Option 4 : 1

Boolean Algebra Question 2 Detailed Solution

Laws of Boolean Algebra:

Name

AND Form

OR Form

Identity law

1.A = A

0 + A = A

Null Law

0.A = 0

1 + A = 1

Idempotent Law

A.A = A

A + A = A

Inverse Law

AA’ = 0

A + A’ = 1

Commutative Law

AB = BA

A + B = B + A

Associative Law

(AB)C

(A + B) + C = A + (B + C)

Distributive Law

A + BC = (A + B)(A + C)

A(B + C) = AB + AC

Absorption Law

A(A + B) = A

A + AB = A

De Morgan’s Law

(AB)’ = A’ + B’

(A + B)’ = A’B’

 

Application:

f(A, B) = ∑ m(0, 1, 2, 3)

= A̅ B̅ + A̅ B + A B̅ + AB

= A̅ ( B + B̅) + A (B̅ + B)

= A̅ + A = 1

Boolean Algebra Question 3:

Find the Boolean function for the shaded region of the following diagram represented.

F1 R.S-D.K 13.09.2019 D5

  1. (A + C’) (B’ + C)
  2. (A + C) (B’ + C)
  3. (A + C’) (B’ + C’)
  4. (A + C) (A + B’)

Answer (Detailed Solution Below)

Option 2 : (A + C) (B’ + C)

Boolean Algebra Question 3 Detailed Solution

F(A, B, C) = C + AB’C’

F(A, B, C) = (C + C’)(C + AB’)

F(A, B, C) = (A + C)(B’ + C)

Boolean Algebra Question 4:

Consider the Boolean function z(a, b, c).

F1 R.S Madhu 09.04.20 D 4

Which one of the following minterm lists represents the circuit given above?

  1. z = ∑ (0, 1, 3, 7)
  2. z = ∑ (1, 4, 5, 6, 7)
  3. z = ∑ (2, 4, 5, 6, 7)
  4. z = ∑ (2, 3, 5)

Answer (Detailed Solution Below)

Option 2 : z = ∑ (1, 4, 5, 6, 7)

Boolean Algebra Question 4 Detailed Solution

The given circuit gives the output:

Z(a, b, c) = a+bc 

Expanding it into canonical form to obtain the minterms

Z(a, b, c) = a(b+b¯)(c+c¯)+(a+a¯)b¯c 

abc+abc¯+ab¯c+ab¯c¯+a¯b¯c

After rearranging the canonical terms, this corresponds to min-terms: ∑ (1,4, 5, 6, 7)

Alternate solution:

The output of the circuit is a+bc 

K Map for this Boolean expression

F1 R.S Madhu 20.04.20  D1

The above K Map corresponds to min-terms: ∑ (1,4, 5, 6, 7)

Boolean Algebra Question 5:

X

Y

F(X,Y)

0

0

0

0

1

0

1

0

1

1

1

1

The truth table represents the Boolean function:

  1. X
  2. X - Y
  3. X + Y
  4. Y

Answer (Detailed Solution Below)

Option 1 : X

Boolean Algebra Question 5 Detailed Solution

From truth table:

F(X, Y) = XY̅ + XY

= X[Y̅ + Y]

F(x, y) = X

Boolean Algebra Question 6:

What is the minimum number of NAND gates needed for the below given?

f(X,Y,Z,W)=XY¯ZW¯+X¯Y¯Z¯W¯+XY¯Z¯W¯+X¯Y¯ZW¯+X¯YZ¯W+X¯YZW+XYZ¯W+XYZW

Answer (Detailed Solution Below) 5

Boolean Algebra Question 6 Detailed Solution

f(X,Y,Z,W)=XY¯ZW¯+X¯Y¯Z¯W¯+XY¯Z¯W¯+X¯Y¯ZW¯+X¯YZ¯W+X¯YZW+XYZ¯W+XYZW

f(X,Y,Z,W)=X¯Y¯Z¯+X¯Y¯ZW¯+X¯YZ¯W+X¯YZW+XY¯Z¯W¯+XY¯ZW¯+XYZ¯W+XYZW

f(X,Y,Z,W)=X¯Y¯W¯(Z+Z¯)+X¯YW(Z+Z¯)+XY¯W¯(Z+Z¯)+XYW(Z+Z¯)

f(X,Y,Z,W)=X¯Y¯W¯+XY¯W¯+X¯YW+XYW

f(X,Y,Z,W)=(X¯+X)(Y¯W¯)+(X¯+X)(YW)

f(X,Y,Z,W)=Y¯W¯+YW

f(X,Y,Z,W)=YW

XNOR gate with NAND gates:

F1 Raju Shraddha 05.05.2021. D6

Hence 5 NAND gates is needed

Tips and Tricks:

The above Boolean function can also be solved using K-map:

Boolean Algebra Question 7:

Minimize the Boolean expression x = ABC + A̅B + ABC̅

  1. B
  2. A
  3. D
  4. AB

Answer (Detailed Solution Below)

Option 1 : B

Boolean Algebra Question 7 Detailed Solution

X = ABC + A̅B + ABC̅

Rearranging:

X = ABC + ABC̅ + A̅B

X = AB(C + C̅) + A̅B

X = AB + A̅B   [C + C̅ = 1]

X = (A + A̅)B  

X = 1.B   [A + A̅ = 1]

X = B

Boolean Algebra Question 8:

Which of the following is equivalent of the Boolean expression given below?

A + A̅.B + A.B̅ 

  1. B̅ + A̅
  2. A + B̅
  3. B + A̅
  4. A + B

Answer (Detailed Solution Below)

Option 4 : A + B

Boolean Algebra Question 8 Detailed Solution

Concept-

  • The branch of algebra which deals with the values of the variables in the form of the truth values true and false is called Boolean algebra.
  • True and false are usually denoted by 1 and 0 respectively


Calculation:

Let F(A, B) = A + A̅ .B + A.B̅

F(A, B) = A (1 + B̅) + A̅.B

F(A, B) = A + A̅.B

F(A, B) = (A + A̅).(A + B)

F(A, B) = A + B 

Boolean Algebra Question 9:

Consider W, Y, A and B be the Boolean variable and $ operator defined as A $ B = A̅ + B where Y = W̅ $ A̅ and W = A + B̅. Find Y?

  1. A
  2. 0
  3. 1

Answer (Detailed Solution Below)

Option 4 : 1

Boolean Algebra Question 9 Detailed Solution

A $ B = A̅ + B (1)

W = A + B̅ (2)

Y = W̅ $ A̅

Y = W + A̅ (From 1)

Y = A + B̅ + A̅ (From 2)

Y = 1 + B̅ = 1

Boolean Algebra Question 10:

The truth table

X

Y

F(X, Y)

0

0

0

0

1

0

1

0

1

1

1

1

represents the Boolean function

  1. X
  2. X + Y
  3. X ⊕ Y
  4. Y

Answer (Detailed Solution Below)

Option 1 : X

Boolean Algebra Question 10 Detailed Solution

The correct answer is "option 1".

EXPLANATION:

Option 1: TRUE

The truth table X is:

X

Y

F

 X

0

0

0

0

0

1

0

0

1

0

1

1

1

1

1

1

 

F is equal to X.

Option 2: FALSE

The truth table X+Y is:

X

Y

F

             X+Y

0

0

0

0

0

1

0

1

1

0

1

1

1

1

1

1

F is not equal to X+Y.

Option 3: FALSE

The truth table X’Y + XY' is:

X

Y

F

 

X’ Y + XY'

0

0

0

0

0

1

0

1

1

0

1

1

1

1

1

0

F is not equal to X’.Y +X.Y'.

Option 4: FALSE

The truth table Y is :

X

Y

F

              Y

0

0

0

              0

0

1

0

              1

1

0

1

              0

1

1

1

              1

 F is not equal to Y.

Hence, the correct answer is "option 1".

From truth table, the sum of minterms

F(X, Y) = X.Y̅ + X.Y = X(Y̅ + Y) = X

Get Free Access Now
Hot Links: teen patti joy mod apk teen patti all app teen patti 100 bonus