State Variables MCQ Quiz in मराठी - Objective Question with Answer for State Variables - मोफत PDF डाउनलोड करा

Last updated on Apr 17, 2025

पाईये State Variables उत्तरे आणि तपशीलवार उपायांसह एकाधिक निवड प्रश्न (MCQ क्विझ). हे मोफत डाउनलोड करा State Variables एमसीक्यू क्विझ पीडीएफ आणि बँकिंग, एसएससी, रेल्वे, यूपीएससी, स्टेट पीएससी यासारख्या तुमच्या आगामी परीक्षांची तयारी करा.

Latest State Variables MCQ Objective Questions

Top State Variables MCQ Objective Questions

State Variables Question 1:

Consider a linear system whose state space representation is x˙(t) = Ax(t). If the initial state vector of the system is x(0)=[12], then the system response is x(t)=[e2x2e2t]. If the initial state vector of the system changed to x(0)=[11], then the system response becomes x(t)=[etet]

The system matrix A is

  1. [0111]
  2. [1112]
  3. [2111]
  4. [0123]

Answer (Detailed Solution Below)

Option 4 :

[0123]

State Variables Question 1 Detailed Solution

Given that x˙(t)=Ax(t) ………………(1)

Now let A=[pqrs]

putting in equation 1 for initial vector [12]

[ddte2tddt(2e2t)]=[pqrs][12]

now at t=0, 

[24]=[pqrs][12]

Comparing, p2q=2andr2s=4  …..(2)

putting in equation 1 for initial vector [11]

[ddtetddt(et)]=[pqrs][11]

now at t=0,

[11]=[pqrs][11]

Comparing, pq=1andrs=1    ….(3)

Solving equation 2 and 3

[pqrs]=[0123]=A

Now characteristic equation is

|αIA|=0

|α12α+3|=0

Solving,    α=1,2

-1 and -2 are eigen values of the system. The corresponding eigen vectors are

[αIA][X]=0

[α112α1+3][x11x21]=0

Now putting α=1 we get only one independent equation x11+x21=0

if x11=Mthen x21=M then eigen vector is

[x11x21]=[MM]=M[11]

again, putting α=2 we get only one independent equation 2x12+x22=0 

if x12=Mthen x22=2M then eigen vector is

[x12x22]=[M2M]=M[12]

 

State Variables Question 2:

F1 U.B 7.5.2 Pallavi D1

Which of the following state matrices represents the above system.

  1. A=[01000113197],B=[001],C=[26130]
  2. A=[01000113197],BT=[001],CT=[26130]
  3. A=[01000113197],BT=[001],C=[26130]
  4. A=[01000113197],B=[001],CT=[26130]

Answer (Detailed Solution Below)

Option 3 : A=[01000113197],BT=[001],C=[26130]

State Variables Question 2 Detailed Solution

F1 U.B 7.5.2 Pallavi D2

From the above block diagram, we get:

1 = x2

2 = x3

3 = -7x3 - 19x2 - 13x1 + u(t)

y(t) = 26x1 + 13x2

∴ The matrix form representation is as follows:

[x˙1x˙2x˙3]=[01000113197][x1x2x3]+[001]u(t)

y(t)=[26130][x1x2x3]+[0]u(t)

A=[01000113197],BT=[001],C=[26130]

State Variables Question 3:

The block diagram of a system with one input u and two outputs y1 and y2 is given below.

DIAGRAM UPDATE OF OLD QUESTIONS PRACTICE REVAMP Deepak images q21

A state-space model of the above system in terms of the state vector x and the output vector y=[y1y2]T is

  1. x.=[2]x+[1]u;y=[12]x
  2. x.=[2]x+[1]u;y=[12]x
  3. x˙=[2002]x+[11]u;y=[12]x
  4. x˙=[2002]x+[11]u;y=[12]x

Answer (Detailed Solution Below)

Option 2 : x.=[2]x+[1]u;y=[12]x

State Variables Question 3 Detailed Solution

x = yx˙=dy1dx

y=[y2]=[22x]=[12]x

y1=1s+2u

y˙1+2y1=u

x˙+2x=u

x˙+2x=u

x˙=[2]x+[1]u

Alternate solution 

Assume x be a state variable

[X(s)=1s+2u(s)]

sX(s)+2X(s) = U(S)

taking inverse laplace transform

x(t)’ + 2 x(t) = u(t)

x’(t)= u(t) – 2x(t)

output equation is given by

y1(t) = x

y2(t) = 2 x

State Variables Question 4:

The state equation for the state diagram shown in figure is

control systems7 2

  1. [x˙1x˙2]=[p1z2p20p2][x1x2]+[aa]r(t)
  2. [x˙1x˙2]=[p1z2p20p2][x1x2]+[a0]r(t)
  3. [x˙1x˙2]=[p1z2p2p2z1p1][x1x2]+[aa]r(t)
  4. [x˙1x˙2]=[p1z2p2p2z1p1][x1x2]+[a0]r(t)
  5. [x˙1x˙2]=[p1z2p2p2z1p1][x1x2]+[00]r(t)

Answer (Detailed Solution Below)

Option 1 : [x˙1x˙2]=[p1z2p20p2][x1x2]+[aa]r(t)

State Variables Question 4 Detailed Solution

control systems7 3

x˙2(t)=ar(t)p2x2(t)x˙1(t)=x˙2(t)p1x1(t)+z2x2(t)=ar(t)p2x2(t)p1x1(t)p1x1(t)+z2x2(t)x˙(t)=p1x1(t)+(z2p2)x2(t)+ar(t)

If we write the above equations in matrix form,

[x˙1(t)x˙2(t)]=[p1z1p20p2][x1(t)x2(t)]+[aa]r(t)

State Variables Question 5:

System transformation function H(z) for a discrete-time LTI system expressed in state variable form with zero initial conditions is

  1. c (zI - A)-1 b + d
  2. c (zI - A)-1
  3. (zI - A)-1 z
  4. (zI - A)-1
  5. c (zI - A)-1 d + b

Answer (Detailed Solution Below)

Option 1 : c (zI - A)-1 b + d

State Variables Question 5 Detailed Solution

Explanation:

Transfer function which is the ratio of Laplace output to the Laplace input when the initial conditions are zero in discrete is the same as continuous but in the z-domain.

Transfer function from state model is given as:

X˙=AX+BU       ----(1)

Y = CX + DU       ----(2)

Where,

Y is single output 

X is single input

X(0) = 0, as initial condition is zero.

Taking Z transform of equation (1):

zX(z) = AX(z) + BU(z)

[zI - A] X(z) = BU(z)

Taking Z transform of equation (2):

Y(z) = CX(z) + DU(z)

putting value of X(z) from equation (1) in equation (2) we get:

T(z)=Y(z)U(z)

T(z) = c[zI - A]-1b + d

So, option (1) is correct answer.

State Variables Question 6:

The transfer function Y(s) / U(s) of a system described by the state equations

ẋ(t) = - 2x(t) + u(t) and

y(t) = 0.5x(t), is 

  1. 0.5(s2)
  2. 1(s2)
  3. 0.5(s+2)
  4. 1(s+2)
  5. 5(s+1)

Answer (Detailed Solution Below)

Option 3 : 0.5(s+2)

State Variables Question 6 Detailed Solution

Concept:

A standard form of State-space matrix:

X˙=AX+BU

It is called a State equation or Dynamic equation

Y = CX + DU 

It is known as the output equation

X˙: Differential State Vector

Y: Output vector

U: Input vector

A: State matrix

B: Input matrix

C: Output matrix

D: Transition matrix

Transfer Function:

For the state model defined by we have to write the Transfer function for the analysis.

It is given by

TF=C[sIA]1B+D

 

The characteristic equation is defined by

|sI – A| = 0

Application:

The state equations in the question can be easily solved as follows:

ẋ(t) = - 2x(t) + 2u(t)

Convert the above equation into Laplace domain, we get

sX(s) = - 2X(s) + U(s)

(s+2) X(s) = U(s)

X(s)=U(s)(s+2)        -----(1)

y(t) = 0.5x(t)

Y(s) = 0.5 X(s)        ----(2)

From (1)  and (2), we get

Y(s)=0.5U(s)(s+2)

Y(s)U(s)=0.5(s+2)

State Variables Question 7:

System transformation function H(z) for a discrete-time LTI system expressed in state variable form with zero initial conditions is

  1. c (zI - A)-1 b + d
  2. c (zI - A)-1
  3. (zI - A)-1 z
  4. (zI - A)-1

Answer (Detailed Solution Below)

Option 1 : c (zI - A)-1 b + d

State Variables Question 7 Detailed Solution

Explanation:

Transfer function which is the ratio of Laplace output to the Laplace input when the initial conditions are zero in discrete is the same as continuous but in the z-domain.

Transfer function from state model is given as:

X˙=AX+BU -----(1)

Y = CX + DU -----(2)

Where,

Y is single output 

X is single input

X(0) = 0, as initial condition is zero.

Taking Z transform of equation (1):

zX(z) = AX(z) + BU(z)

[zI - A] X(z) = BU(z)

Taking Z transform of equation (2):

Y(z) = CX(z) + DU(z)

putting value of X(z) from equation (1) in equation (2) we get:

T(z)=Y(z)U(z)

T(z) = c[zI - A]-1b + d

So, option (1) is correct answer.

State Variables Question 8:

State Diagram of a system is shown below

24.10.2018.015

The A, B, C matrix are

  1. A=[0010106168]B=[001]C=[682]
  2. A=[0100006168]B=[101]C=[682]
  3. A=[0100016168]B=[001]C=[682]
  4. A=[0010106168]B=[101]C=[682]

Answer (Detailed Solution Below)

Option 3 : A=[0100016168]B=[001]C=[682]

State Variables Question 8 Detailed Solution

24.10.2018.016

From the Diagram

X3=X˙2 

X2=X˙1 

X4 = U(S) – 8X3 – 16 X2 – 6 X1

x˙=[0100016168]x+[001]U(t) 

y(s) = 6x1 + 8x2 + 2x3

y(t)=[682][x1x2x3] 

Hence option 3 is correct

State Variables Question 9:

The state equation for the state diagram shown in figure is

control systems7 2

  1. [x˙1x˙2]=[p1z2p20p2][x1x2]+[aa]r(t)
  2. [x˙1x˙2]=[p1z2p20p2][x1x2]+[a0]r(t)
  3. [x˙1x˙2]=[p1z2p2p2z1p1][x1x2]+[aa]r(t)
  4. [x˙1x˙2]=[p1z2p2p2z1p1][x1x2]+[a0]r(t)

Answer (Detailed Solution Below)

Option 1 : [x˙1x˙2]=[p1z2p20p2][x1x2]+[aa]r(t)

State Variables Question 9 Detailed Solution

control systems7 3

x˙2(t)=ar(t)p2x2(t)x˙1(t)=x˙2(t)p1x1(t)+z2x2(t)=ar(t)p2x2(t)p1x1(t)p1x1(t)+z2x2(t)x˙(t)=p1x1(t)+(z2p2)x2(t)+ar(t)

If we write the above equations in matrix form,

[x˙1(t)x˙2(t)]=[p1z1p20p2][x1(t)x2(t)]+[aa]r(t)

State Variables Question 10:

For the system shown below the state space equation is x˙=Ax+Bu. The matrix A is

EE FT5 22

  1. [014100300]
  2. [014100300]
  3. [410001003]
  4. [410001003]

Answer (Detailed Solution Below)

Option 3 : [410001003]

State Variables Question 10 Detailed Solution

x˙1=4x1+x2

x˙2=x3+2u

x˙3=3x3+u

A=[410001003]

Get Free Access Now
Hot Links: teen patti star apk teen patti apk teen patti real cash 2024 teen patti game