Bilinear Forms,Quadratic Forms MCQ Quiz in मराठी - Objective Question with Answer for Bilinear Forms,Quadratic Forms - मोफत PDF डाउनलोड करा

Last updated on Mar 18, 2025

पाईये Bilinear Forms,Quadratic Forms उत्तरे आणि तपशीलवार उपायांसह एकाधिक निवड प्रश्न (MCQ क्विझ). हे मोफत डाउनलोड करा Bilinear Forms,Quadratic Forms एमसीक्यू क्विझ पीडीएफ आणि बँकिंग, एसएससी, रेल्वे, यूपीएससी, स्टेट पीएससी यासारख्या तुमच्या आगामी परीक्षांची तयारी करा.

Latest Bilinear Forms,Quadratic Forms MCQ Objective Questions

Top Bilinear Forms,Quadratic Forms MCQ Objective Questions

Bilinear Forms,Quadratic Forms Question 1:

A quadratic form Q(x, y, z) over \(\mathbb{R}\) represents 0 non trivially if there exists (a, b, c) ∈ \(\mathbb{R}\)3 \{(0, 0, 0)} such that Q(a, b, c) = 0. Which of the following quadratic forms Q(x, y, z) over \(\mathbb{R}\) represent 0 non trivially?

  1. Q(x, y, z) = xy + z2
  2. Q(x, y, z) = x2 + 3y2 - 2z2
  3. Q(x, y, z) = x2 - xy + y2 + z2
  4. Q(x, y, z) = x2 + xy + z2

Answer (Detailed Solution Below)

Option :

Bilinear Forms,Quadratic Forms Question 1 Detailed Solution

Explanation:

Options (1):

Q(x, y, z) = xy + z2

(-1, 1, 1) ∈ \(\mathbb{R}\)3 \{(0, 0, 0) and Q(-1, 1, 1) = -1 + 1 = 0

Q(x, y, z) = xy + zover \(\mathbb{R}\) represent 0 non trivially

Options (2):

Q(x, y, z) = x2 + 3y2 - 2z2

(-1, 1, √2) ∈ \(\mathbb{R}\)3 \{(0, 0, 0) and Q(-1, 1, √ 2) = 1 + 3 - 2 × 2 = 0

∴ Q(x, y,  z) = x2 + 3y2 - 2zover \(\mathbb{R}\) represent 0 non trivially

Options (4):

Q(x, y, z) = x2 + xy + z2

(1, -2, 1) ∈ \(\mathbb{R}\)3 \{(0, 0, 0) and Q(1, -2, 1) = 1 - 2 + 1 = 0

∴ Q(x, y,  z) = x2 + xy + zover \(\mathbb{R}\) represent 0 non trivially

Options (3):

if possible such (a, b, c) ∈ \(\mathbb{R}\)3 \{(0, 0, 0) exist such that

Q(x, y, z) = x2 - xy + y2 + z= 0

⇒ (x-y)+ z+ xy = 0

⇒ (x-y)+ z2> 0 so xy must less than 0

So if xy < 0 then Q(x, y, z) = x2 - xy + y2 + z > 0 for any (a, b, c) ∈ \(\mathbb{R}\)3 \{(0, 0, 0).

Q(x, y, z) = x2 - xy + y2 + zover \(\mathbb{R}\) does not represent 0 non-trivially.

Options (1), (2), (4) are correct.

Bilinear Forms,Quadratic Forms Question 2:

Let b: ℝ × ℝ→ be the bilinear form defined by  

b(X, Y) = x1y1 + 2x1у2 - x2y1 + 3x2y2 where X= (x1, x2) and Y = (y1, y2). Find the 2 × 2 matrix B of b relative to the basis U = {u1, u2} where u1 = (1, 0) and u2 = (1, 1).

  1. \(\left[\begin{array}{cc}4 & 1 \\ 5 & 3\end{array}\right]\)
  2. \(\left[\begin{array}{cc}1 & 3 \\ 5 & 5\end{array}\right]\)
  3. \(\left[\begin{array}{cc}1 & 4 \\ 6 & 3\end{array}\right]\)
  4. \(\left[\begin{array}{cc}1 & 2 \\ -2 & 3\end{array}\right]\)

Answer (Detailed Solution Below)

Option 2 : \(\left[\begin{array}{cc}1 & 3 \\ 5 & 5\end{array}\right]\)

Bilinear Forms,Quadratic Forms Question 2 Detailed Solution

Explanation:

Given  

b(X, Y) = x1y1 + 2x1у2 - x2y1 + 3x2y

u1 = (1, 0) and u2 = (1, 1).

the matrix   B =( \(b_{ij}\)) and   \(b_{ij} = b(u_{i},u_j) \)  where  \(1 \leq i \leq2 \)   and   \(1 \leq j \leq2\) 

X= (x1, x2) and Y = (y1, y2)

Now,   \(b_{11}\) = b((1, 0); (1, 0)) = 1 + 0 - 0 + 0 = 1 

         \(b_{12}\) = b((1, 0); (1, 1)) = 1 + 2 - 0 + 0 = 3 

        \(b_{21}\) = b((1,1), (0,1)) = 0 + 2 - 0 + 3 = 5

        \(b_{22}\) = b((1,1), (1,1)) = 1 + 2 - 1 + 3 = 5 

Hence required matrix  is 

B = \(\left[\begin{array}{cc}1 & 3 \\ 5 & 5\end{array}\right]\)

Therefore the correct option is option (2)   

Bilinear Forms,Quadratic Forms Question 3:

Let A =\(\left(\begin{array}{ccc}-1 & -2 & 0 \\ 1 & 1 & -2 \\ 0 & 1 & -a\end{array}\right)\), a ∈ ℝ. Then for which of the following value of a, A is negative definite?

  1.  a < 2
  2.  a > 2
  3.  a > -2
  4.  a < -2

Answer (Detailed Solution Below)

Option 3 :  a > -2

Bilinear Forms,Quadratic Forms Question 3 Detailed Solution

Concept:

A square matrix  A is called positive definite if and only if negative definite iff the principal minors change their sign alternatively starting with negative.

Explanation:

A = \(\left(\begin{array}{ccc}-1 & -2 & 0 \\ 1 & 1 & -2 \\ 0 & 1 & -a\end{array}\right)\), a ∈ ℝ

Here, 1st leading minor is -1 < 0

2nd leading minor 

\(\begin{vmatrix}-1 & -2\\ 1 & 1\end{vmatrix}\) = - 1 + 2 = 1 > 0

and 3rd leading minor must be less than zero 

\(\left|\begin{array}{ccc}-1 & -2 & 0 \\ 1 & 1 & -2 \\ 0 & 1 & -a\end{array}\right|\) < 0

⇒ -1(-a + 2) - 2(0 + a) < 0

⇒ a - 2 - 2a < 0 

⇒ -a - 2 < 0 

⇒ a + 2 > 0

⇒ a > -2

Hence A is negative definite for a > -2.

(3) is correct

Bilinear Forms,Quadratic Forms Question 4:

Let A = (ai, j) be a real symmetric 3 × 3 matrix. Consider the quadratic form Q(X1, X2, X3) = xt Ax where x = (X1, X2, X3)t.

Which of the following is true?

  1. If Q(x1, x2, x3) is positive definite, then ai, j > 0 for all i ≠ j.
  2. If Q(x1, x2, x3) is positive definite, then ai, i > 0 for all i.
  3. If ai, j > 0 for all i ≠ j, then Q(x1, x2, x3) is positive definite.
  4. If ai, i > 0 for all i, then Q(x1, x2, x3) is positive definite.

Answer (Detailed Solution Below)

Option 2 : If Q(x1, x2, x3) is positive definite, then ai, i > 0 for all i.

Bilinear Forms,Quadratic Forms Question 4 Detailed Solution

Concept:

A quadratic form Q = xTAx is called positive definite if Q > 0 for all x ≠ 0 or if all the eigenvalues of A or positive or if A is symmetric and has positive leading principal minors

Explanation:

 Given quadratic form is Q(X1, X2, X3) = xt Ax where x = (X1, X2, X3)t. where A = (ai, j) be a real symmetric 3 × 3 matrix.

Let A = \(\begin{bmatrix}1&0&0\\0&1&0\\0&0&1\end {bmatrix}\) 

Here ai, j = 0 for all i ≠ j but Q(x1, x2, x3) is positive definite as all the eigenvalues of A ire positive.

(1) is false

If ai, j > 0 for all i and A is symmetric then leading principal minors of A are positive,

Hence Q is positive definite.

(2) is true

Let A = \(\begin{bmatrix}1&1&1\\1&1&1\\1&1&1\end {bmatrix}\)

Here ai, j > 0 for all i ≠ j but Q(x1, x2, x3) is not positive definite.

(3) is false

For same example (4) is also false

Bilinear Forms,Quadratic Forms Question 5:

Which of the following statements is true?

  1.  Any two quadratic forms of same rank in n-variables over ℝ are isomorphic
  2. Any two quadratic forms of same rank in n-variables over ℂ are isomorphic
  3. Any two quadratic forms in n-variables are isomorphic over ℂ
  4. A quadratic form in 4 variables may be isomorphic to a quadratic from in 10 variables

Answer (Detailed Solution Below)

Option 2 : Any two quadratic forms of same rank in n-variables over ℂ are isomorphic

Bilinear Forms,Quadratic Forms Question 5 Detailed Solution

Given - We have four statement in options.

Concept

Theorem -(i) - Two quadratic forms each in n variables are isomorphic over R if and only they have same rank and same index or their same rank and the same signature.

Theorem -(ii) - Two quadratic forms each in n variables are isomorphic over C if and only they have the same rank.

Explanation -

Option (i) is false.

Option (ii) is true.

Option (iii) is false.

For option (iv) -  Two quadratic forms are isomorphic if they become identical after a linear invertible change of variables. 

Hence the option (iv) is false.

Bilinear Forms,Quadratic Forms Question 6:

Let b: ℝ × ℝ→ be the bilinear form defined by  

b(X; Y) = x1y1 - 2x1у2 + x2y1 + 3x2y2 where X= (x1, x2) and Y = (y2, y2). Find the 2 × 2 matrix B of b relative to the basis U = {u1, u2} where u1 = (0, 1) and u2 = (1, 1).

  1. \(\left[\begin{array}{cc}5 & -3 \\ 0 & 0\end{array}\right]\)
  2. \(\left[\begin{array}{cc}1 & 4 \\ -1 & 1\end{array}\right]\)
  3. \(\left[\begin{array}{ll}0 & 4 \\ 2 & 3\end{array}\right]\)
  4. \(\left[\begin{array}{cc}3 & 4 \\ 2 & 3\end{array}\right]\)

Answer (Detailed Solution Below)

Option 4 : \(\left[\begin{array}{cc}3 & 4 \\ 2 & 3\end{array}\right]\)

Bilinear Forms,Quadratic Forms Question 6 Detailed Solution

Explanation:

Given data  

b(X; Y) = x1y1 - 2x1у2 + x2y1 + 3x2y2   ,   u1 = (0, 1) and u2 = (1, 1).

the matrix   B =( \(b_{ij}\)) and   \(b_{ij} = b(u_{i},u_j) \)  where  \(1 \leq i \leq2 \)   and   \(1 \leq j \leq2\) 

now   \(b_{11}=b((0,1);(0,1))=3\)

         \(b_{12}=b((0,1),(1,1))=4\) 

        \(b_{21}=b((1,1),(0,1))=2\) 

        \(b_{22}=((1,1),(1,1))=3\) 

now then our required matrix  is 

        B \(=\left[\begin{array}{cc}3 & 4 \\ 2 & 3\end{array}\right]\)

Therefore the correct option is option (4)   

Bilinear Forms,Quadratic Forms Question 7:

Which of the following statements regarding quadratic forms in 3 variables are true? 

  1. Any two quadratic forms of rank 3 are isomorphic over   
  2. Any two quadratic forms of rank 3 are isomorphic over 
  3. There are exactly three non zero quadratic forms of rank ≤ 3 upto isomorphism over 
  4. There are exactly three non zero quadratic forms of rank 2 upto isomorphism over  and 

Answer (Detailed Solution Below)

Option :

Bilinear Forms,Quadratic Forms Question 7 Detailed Solution

Concept:

1. Two quadratic forms over R are isomorphic if they have same rank and some signature.

2. Two quadratic forms over  are isomorphic if they have same rank.

Explanation:

(1) Option (1) is false using result 1, because with same rank they can have a different signature.

(2) Option (2) is true using result 2.

(3) Option (3) quadratic form in 3 variables (non-zero) can have rank 1, 2 or 3, only and being over , with same rank they are isomorphic. Thus there are 3 quadratic forms upto isomorphic over  and (c) is true.

(4) Option (4) it is false as over  with rank 2, there is only one quadratic form (result 2).

The correct options are (2) and (3).
 

Bilinear Forms,Quadratic Forms Question 8:

Let V be a vector space of 2 × 2 matrices over the field of real numbers, and consider the bilinear form f(A, B) = 2tr(AB) - tr(A)tr(B). Then which of the following is correct?

  1. f is symmetric bilinear form
  2. f is skew-symmetric bilinear form
  3. f is alternating bilinear form
  4. none of the above

Answer (Detailed Solution Below)

Option 1 : f is symmetric bilinear form

Bilinear Forms,Quadratic Forms Question 8 Detailed Solution

Concept:

Let V be a vector space of dimension n over a field K. A map B : V × V → K  is a symmetric bilinear form on the space if

(i) B(u, v) = B(v, u) ∀ u, v ∈ V

(ii) B(u + v, w) = B(u, w) + B(v, w) ∀ u, v, w ∈ V

(iii) B(cu, v) = cB(u, v) ∀ u, v ∈ V, c ∈ K

It will be skew-symmetric bilinear if B(u, v) = - B(v, u) ∀ u, v ∈ V and is alternating if B(u, u) = 0 ∀ u ∈ V 

Explanation:

 f(A, B) = 2tr(AB) - tr(A)tr(B).

(i)  f(B, A) = 2tr(BA) - tr(B)tr(A) = 2tr(AB) - tr(A)tr(B) = f(A, B) (∵) tr(AB) = tr(BA)) ∀ A, B ∈ \(\mathbb M_{2× 2}\)

(ii) f(A + B, C) = 2tr((A + B)C) - tr(A + B)tr(C) 

                      = 2tr(AC) + 2tr(BC) - (tr(A) + tr(B))tr(C) (∵ tr(A + B) = tr(A) + tr(B))

                     = 2tr(AC) - tr(A)tr(C) + 2tr(BC) - tr(A)tr(C) = f(A, C) + f(B, C) ∀ A, B, C ∈ \(\mathbb M_{2× 2}\)

(iii) f(cA, B) =  2tr(cAB) - tr(cA)tr(B) = 2c tr(AB) - c tr(A)tr(B) = c f(A, B) (∵ tr(kA)=k tr(A)), ∀ A, B ∈ \(\mathbb M_{2× 2}\), c ∈ F

Hence f is symmetric bilinear form

(1) is true and (2)  is false.

f(A, A) = 2tr(A2) - tr(A)tr(A) = 2tr(A2) - [tr(A)]2 which is not equal to zero always.

f is not alternating

Option (3) is false.

Bilinear Forms,Quadratic Forms Question 9:

Let f be a non-zero symmetric bilinear from on ℝ3. suppose that exist linear transformations Ti: ℝ→ ℝ, i = 1, 2 such that for all x, y, ∈ ℝ3, f(x, y) = T1(x)T2(y)

  1. 2
  2. 3
  3. 4
  4. 1

Answer (Detailed Solution Below)

Option 4 : 1

Bilinear Forms,Quadratic Forms Question 9 Detailed Solution

Concept:

The rank of a symmetric bilinear form is equal to the rank of its associated matrix.

Explanation: 

T1, T2 are linear maps from ℝto ℝ.

The image of f is spanned by T1 and T2 but f itself is symmetric.
Therefore, the matrix associated with f has rank 1 because it can be expressed as an outer product of two vectors corresponding to Tand T2.

Option (4) is true.

Bilinear Forms,Quadratic Forms Question 10:

On the complex vector space ℂ100 with standard basis {e1, e2, ..., e100}, consider the bilinear form B(x, y) = ∑ixiyi, where xi and yi are the coefficients of ei in x and y respectively. Which of the following statements are true?

  1. B is nondegenerate. 
  2. Restriction of B to all nonzero subspaces is nondegenerate.
  3. There is a 51 dimensional subspace W of ℂ100  such that the restriction B : W × W → ℂ is the zero map.
  4. There is a 49 dimensional subspace W of ℂ100  such that the restriction B : W × W → ℂ is the zero map.

Answer (Detailed Solution Below)

Option :

Bilinear Forms,Quadratic Forms Question 10 Detailed Solution

Concept:

A bilinear form B(x, y) is said to be non-degenerate if B(x, y) = 0 for all y ∈ V implies x = 0 i.e., B(x, y) is called non-degenerate if det [B] ≠ 0

Explanation:

Basis is {e1, e2, ..., e100}

e= (1, 0, 0, ...., 0), e100 = (0, 0, 0, ..., 1)

 the bilinear form B(x, y) = ∑ixiyi, where xi and yi are the coefficients of ei in x and y respectively

Then B(ei, ej) = ∑ieie\(\begin{cases}1, i=j\\0, i≠ j\end{cases}\)

So, matrix representation of B is

[B] = \(\begin{bmatrix}1&0&...&0\\0&1&...&0\\.&.&...&.\\0&0&...&1\end{bmatrix}\) which is a identity matrix of order 100

Hence det[B] ≠ 0

Therefore B is non-degenerate

(1) is correct

(4): dimension of W is 49

If we consider W = {(i, 1, 0, ..., 0), (0, 0, i, 1, 0, ..., 0), (0, 0, ..., i, 1, 0, 0)} then the determinant of [B] restricted to W will be 0

Hence (4) is correct and (2), (3) are false

Get Free Access Now
Hot Links: teen patti flush teen patti palace teen patti rummy teen patti baaz teen patti master plus