Sequences and Series MCQ Quiz in मल्याळम - Objective Question with Answer for Sequences and Series - സൗജന്യ PDF ഡൗൺലോഡ് ചെയ്യുക

Last updated on Apr 12, 2025

നേടുക Sequences and Series ഉത്തരങ്ങളും വിശദമായ പരിഹാരങ്ങളുമുള്ള മൾട്ടിപ്പിൾ ചോയ്സ് ചോദ്യങ്ങൾ (MCQ ക്വിസ്). ഇവ സൗജന്യമായി ഡൗൺലോഡ് ചെയ്യുക Sequences and Series MCQ ക്വിസ് പിഡിഎഫ്, ബാങ്കിംഗ്, എസ്എസ്‌സി, റെയിൽവേ, യുപിഎസ്‌സി, സ്റ്റേറ്റ് പിഎസ്‌സി തുടങ്ങിയ നിങ്ങളുടെ വരാനിരിക്കുന്ന പരീക്ഷകൾക്കായി തയ്യാറെടുക്കുക

Latest Sequences and Series MCQ Objective Questions

Top Sequences and Series MCQ Objective Questions

Sequences and Series Question 1:

If we have a sequence {yn}n=1, it means for the sequence to have a limit 1 as n tends to infinity. It can be written as ___________.

  1. y→ 1 as n → 0
  2. yn → n as n → 0
  3. y→ 1 as n → ∞ 
  4. y→ n as n → 1

Answer (Detailed Solution Below)

Option 3 : y→ 1 as n → ∞ 

Sequences and Series Question 1 Detailed Solution

solution- 

we have a sequence {yn}n=1

If {yn}n=1 tends to 1 as n tends to infinity then y→ 1 as n → ∞ 

Therefore, Correct answer is Option 3).

Sequences and Series Question 2:

Test for the convergence of the series. 12+23+34+45+.....

  1. Convergent 
  2. Divergent 
  3. satiefies the necessary condition of series to be convergent 
  4. None of these

Answer (Detailed Solution Below)

Option 2 : Divergent 

Sequences and Series Question 2 Detailed Solution

Given:

12+23+34+45+.....

Concept used: 
The necessary condition of series to be convergent is Ltnun=0;

Limit comparison test:

if uand vare positive terms sequence such that Ltnunvn=c" id="MathJax-Element-6-Frame" role="presentation" style="display: inline; position: relative;" tabindex="0">Ltnunvn=c

 where c > 0 and c is finite then Both uand vconverge and diverge together

P- series test: 

∑ 1np1np" id="MathJax-Element-25-Frame" role="presentation" style="display: inline; position: relative;" tabindex="0">1np is convergent for p > 1 and divergent for p ≤  1

un Ltnnn+1=1 

⇒ necessary condition fails 

Now, by limit comparison test 

Take 

Ltnunvn=Ltn11+1n=1 (Finite)

∑vn is divergent by p-series test. (p = 0 < 1)

∴ By limit comparison test, ∑un is divergent

∴ option 2 is correct 

Sequences and Series Question 3:

Find the value of mnm+n+13(mnm+n)3+15(mnm+n)5+....+

  1. loge(mn)
  2. loge(nm)
  3. loge(mnm+n)
  4. 12loge(mn)

Answer (Detailed Solution Below)

Option 4 : 12loge(mn)

Sequences and Series Question 3 Detailed Solution

Concept:

log(1x)=(xx22x33x44...)

log(1+x)=(xx22+x33x44...)

Calculation:

We know that,

loge(1x1+x)=loge(1x)loge(1+x)

=(xx22x33x44...)(xx22+x33x44...)

=2x2x332x55....

loge(1x1+x)=2[x+x33+x55+...]

12loge(1x1+x)=x+x33+x55+....

Therefore,

mnm+n+13(mnm+n)3+15(mnm+n)5+....

=12loge1(mnm+n)1+(mnm+n)

=12loge(m+n(mn)m+n+mn)

=12loge(2n2m)=12loge(mn)

Sequences and Series Question 4:

If ai > 0 for i = 1, 2, 3,..,n and a1, a2, a3, ...an = 1 then the greatest value of (1 + a1)(1 + a2)... (1 + an) is:

  1. 22n
  2. 2n
  3. 1
  4. 2n2

Answer (Detailed Solution Below)

Option 2 : 2n

Sequences and Series Question 4 Detailed Solution

Let the given expansion be f(n)

f(n) = (1 + a1)(1 + a2)... (1 + an)

Also given, a1 = a= a3 = ... = an = 1

Consider for n = 2

f(2) = (1 + a1)(1 + a2)

f(2) = (1 + 1)(1 + 1) = 22

Consider for n = 5

f(5) = (1 + a1)(1 + a2)(1 + a3)(1 + a4)(1 + a5)

f(5) = (1 + 1)(1 + 1)(1 + 1)(1 + 1)(1 + 1) = 25

Similary for n times, it is given as

f(n) = (1 + 1)(1 + 1) ...... (1 + 1) = 2n

(1 + a1)(1 + a2)... (1 + an) = 2n

Sequences and Series Question 5:

The Sequence mn where m, n ∈ N is 

  1. Bounded 
  2. Unbounded 
  3. Oscillating 
  4. None of these

Answer (Detailed Solution Below)

Option 2 : Unbounded 

Sequences and Series Question 5 Detailed Solution

Given:

The Sequence mn where m, n ∈ N 

Concept used:

The Sequence is bounded if for all the Terms of the sequence there exists M and m such that m < ai < M, where ai, are the terms in the Sequence

if no such m and M exists then Sequence is Unbounded 

if revolving around a number than  it is Oscillating.

Calculations:

The Terms of the Sequence mare as 0, 1, 2, 4, 8,.......,3, 9, 27,........, 4, 16, 64,........ as so on.

So there doesn't exist M such that all the Terms of the Sequence are less than that M and m = 0 here'

∴ The sequence is not bounded i.e Unbounded.

Sequences and Series Question 6:

Test for convergence the series n=1n1n

  1. Convergent 
  2. Divergent 
  3. Neither Convergent nor Divergent 
  4. None of these

Answer (Detailed Solution Below)

Option 1 : Convergent 

Sequences and Series Question 6 Detailed Solution

Concept used:

Ratio test:

L = Ltnun+1un

L > 1 the series is Divergent neither convergent or divergent 

L < 1 the series is Convergent 

L = 1 test fails Neither Convergent nor Divergent 

Calculations:

un = n1-n ; un + 1 = (n + 1)-n ;

un+1un=(n+1)nn1n=nnn(n+1)n=1n(nn+1)n

Ltnun+1un=Ltn1n.(11+1n)n=0.1e=0<1

∴ By ratio test ∑un, is convergent

Sequences and Series Question 7:

Test the convergence of the series n=1(n+1)xnn3;x>0

  1. Convergent if x > 1
  2. Divergent if x < 1.
  3. Convergent if x ≤  1 and Divergent if x > 1.
  4. Convergent if x > 1 and Divergent if x < 1.

Answer (Detailed Solution Below)

Option 3 : Convergent if x ≤  1 and Divergent if x > 1.

Sequences and Series Question 7 Detailed Solution

Concept used:

Ratio test:

L = Ltnun+1un

L > 1 the series is Divergent neither convergent or divergent 

L < 1 the series is Convergent 

L = 1 test fails Neither Convergent nor Divergent 

Limit Comparision test:

if an and bn are two positive series such that Ltnanbn=c

where c > 0 and finite then, either Both series converges or diverges together

P - Series test: 

∑ 1np is convergent for p > 1 and divergent for p ≤  1 

Calculations:

un=(n+1)xnn3;un+1(n+2)xn+1(n+1)3

un+1un=n+2(n+1)3.xn+1.n3(n+1)xn=(n+2n+1)(nn+1)3.x

Ltnun+1un=Ltn(1+2n1+1n)1(1+1n)3.x=x

∴ By ratio test, ∑uconverges when x < 1 and diverges when x > 1.

When x = 1, un=n+1n3 

Take vn=1n2 ; By Limit comparison test ∑uis convergent 

∴ ∑uis convergent if x ≤  1 and divergent if x > 1.

Sequences and Series Question 8:

 n=1sin(1n) is 

  1. Convergent 
  2. Divergent 
  3. Neither Convergent nor Divergent 
  4. none of these

Answer (Detailed Solution Below)

Option 2 : Divergent 

Sequences and Series Question 8 Detailed Solution

Given:

n=1sin(1n)

Concept used:

Limit Comparision test:

if an and bn are two positive series such that Ltnunvn=cLtnanbn=c" id="MathJax-Element-24-Frame" role="presentation" style="display: inline; position: relative;" tabindex="0">

where c > 0 and finite then, either Both series converges or diverges together

P - series test:

 ∑ 1npis convergent for p > 1 and divergent for p ≤  1

Calculations:

n=1sin(1n)

take vn = 

Ltnunvn=Ltnsin(1n)(1n)=Ltt0sintt (where t = 1/n) = 1

∴ ∑un, ∑vn both converge or diverge. But ∑vn = 1n is divergent

(p-series test, p = 1);

∴ ∑un is divergent.

Sequences and Series Question 9:

The series (n!)2(2n)!x2n converges if

  1. x ≤ -2 and x ≥ 2
  2. -2 ≤ x ≤ 2
  3. -2 < x < 2
  4. x < -2 and x > 2

Answer (Detailed Solution Below)

Option 3 : -2 < x < 2

Sequences and Series Question 9 Detailed Solution

Concept:

By ratio test, if limnunun+1=λ,

Then the series converges for λ > 1 and diverges for λ < 1 and fails for λ =1;

By Raabe’s test, if limnn[unun+11]=k,

Then the series converges for k > 1 and diverges for k < 1, but the test fails for k = 1.

Calculation:

From the given series,

unun+1=(n!(n+1)!)2.(2(n+1))!(2n)!.x2nx2(n+1)

unun+1=(2n+1)(2n+2)(n+1)21x2=2(2n+1)(n+1)1x2

Taking limit,

limnunun+1=limn2(2+1n)1+1n1x2=4x2

Thus by ratio test, series converges for x2 < 4 and diverges for x2 > 4, but fails for x2 = 4;

When x2 = 4,

n[unun+11]=n[2n+12(n+1)1]=n2n+2

limnn[unun+11]=12<1

Thus by Raabe's test, the series diverges.

Hence the given series

converges for x2 < 4 → -2 < x < 2 and

diverges for x2 ≥ 4 → x ≤ -2 and x ≥ 2

Sequences and Series Question 10:

The series  un=(1n).sin(1n) is 

  1. Convergent 
  2. Divergent
  3. Neither Convergent nor Divergent 
  4. None of these

Answer (Detailed Solution Below)

Option 1 : Convergent 

Sequences and Series Question 10 Detailed Solution

Given:

un=(1n).sin(1n)

Concept used:

Limit Comparision test:

if an and bn are two positive series such that Ltnanbn=c 

where c > 0 and finite then, either Both series converges or diverges together

P - Series test:

1npis convergent for p > 1 and divergent for p ≤  1

Calculations:

Let v = 1n2 , so that Σvn is convergent by p-series test.

Ltn(unvn)=Ltnsin(1n)(1n)

=Ltn0(sintt)

where t = 1/n, Thus Ltn(unvn)=10

∴ By Limit comparison test Σun is convergent.

 
Get Free Access Now
Hot Links: teen patti wink teen patti master plus teen patti royal - 3 patti teen patti casino apk