Properties MCQ Quiz in मल्याळम - Objective Question with Answer for Properties - സൗജന്യ PDF ഡൗൺലോഡ് ചെയ്യുക

Last updated on Apr 12, 2025

നേടുക Properties ഉത്തരങ്ങളും വിശദമായ പരിഹാരങ്ങളുമുള്ള മൾട്ടിപ്പിൾ ചോയ്സ് ചോദ്യങ്ങൾ (MCQ ക്വിസ്). ഇവ സൗജന്യമായി ഡൗൺലോഡ് ചെയ്യുക Properties MCQ ക്വിസ് പിഡിഎഫ്, ബാങ്കിംഗ്, എസ്എസ്‌സി, റെയിൽവേ, യുപിഎസ്‌സി, സ്റ്റേറ്റ് പിഎസ്‌സി തുടങ്ങിയ നിങ്ങളുടെ വരാനിരിക്കുന്ന പരീക്ഷകൾക്കായി തയ്യാറെടുക്കുക

Latest Properties MCQ Objective Questions

Top Properties MCQ Objective Questions

Properties Question 1:

If the Laplace transform of f(t) which is given below is F(s)=a5e2s+becss, then the value of a + b + c is f(t)={2;0<t<23;2<t<54;t>5

Answer (Detailed Solution Below) 14

Properties Question 1 Detailed Solution

Grade B 2

f(t) = 2u(t) - 5u(t - 2) + 7u(t - 5)

F(s)=2s5e2ss+7e5ss=25e2s+7e5ss

Given that,

F(s)=a5e2s+becss

By comparing both equations, a = 2, b = 7, c = 5

⇒ a + b + c = 14

Properties Question 2:

Find the value of L[eatebtt].

  1. logsasb
  2. logs+as+b
  3. logsbsa
  4. logs+bs+a

Answer (Detailed Solution Below)

Option 4 : logs+bs+a

Properties Question 2 Detailed Solution

L(eatebt)=1s+a1s+b

We know that F{f(t)t}=sF(s)ds

Hence L[eatebtt]=s(1s+a1s+b)ds

=log(s+as+b)s=log1log(s+as+b)=log(s+bs+a)

Properties Question 3:

If the Laplace transform of y(t) is given by Y(s)=L(y(t))=52(s1)2s2+12(s3), then y(0) + y'(0) = _________.

Answer (Detailed Solution Below) 1

Properties Question 3 Detailed Solution

Y(s)=L(y(t))=52(s1)2s2+12(s3)

Apply inverse Laplace transform,

y(t)=52et2e2t+12e3t

Differentiate with respect to ‘t’.

y(t)=52et4e2t+32e3t

y(0)=522+12=1y(0)=524+32=0

⇒ y(0) + y'(0) = 1

Properties Question 4:

The inverse Laplace transform of s+2s2(s+1)(s2)

  1. 23(e2tett)
  2. 43e2t23et13t
  3. 13(e2tett)
  4. 13(e2t+ett)

Answer (Detailed Solution Below)

Option 3 : 13(e2tett)

Properties Question 4 Detailed Solution

L1(s+2(s+1)(s2))=L1[431(s2)131(s+1)]=43L1(1s2)13L1(1s+1)=43e2t13etL1(1s.s+2(s+1)(s2))=0tL1(s+2(s+1)(s2))dt=0t(43e2t13et)dt=23e2t+13et1L1(s+2s2(s+1)(s2))=0t(23e2t+13et1)dt=13(e2tett)

Properties Question 5:

A differential equation is given by y'' + 25y = a sin 5t with initial conditions y(0) = 4 and y’(0) = 0. The Laplace transform of y(t) is given by bs3+100s+20(s2+25)2.Then find the value of a + b.

Answer (Detailed Solution Below) 8

Properties Question 5 Detailed Solution

Y’’ + 25 y = a sin 5t

By applying Laplace transform to the given differential equation, we get

[s2y(s)sy(0)y(0)]+25y(s)=5as2+25

[s2y(s)4s0]+25y(s)=5as2+25

y(s)[s2+25]=4s+5as2+25

y(s)=4s(s2+25)+5a(s2+25)2

y(s)=4s3+100s+5a(s2+25)2

Given that,

y(s)=bs3+100s+20(s2+25)2

By comparing both the equations a = 4, b = 4

⇒ a + b = 8

Properties Question 6:

Find the Laplace transform of the periodic function f(t)={t,0<t<ππt,π<t<2π

  1. 11e2πs{πs(e2πseπs)1s2(1e2πs2eπs)}
  2. 11e2πs{πs(e2πseπs)+1s2(1+e2πs2eπs)}
  3. 11e2πS{πs(e2πseπs)+1s2(1e2πs+2eπs)}
  4. 11e2πs{πs(e2πseπs)1s2(1+e2πs2eπs)}

Answer (Detailed Solution Below)

Option 2 : 11e2πs{πs(e2πseπs)+1s2(1+e2πs2eπs)}

Properties Question 6 Detailed Solution

If f(t) is a periodic function with period T,

i.e. f(t + T) = f (t), then

L{f(t)}=oTestf(t)dt1eST

Here the period of f(t) = 2π 

Lf(t)=11e2πs{oπesttdt+π2πest(πt)dt}

=11e2πs{[t(ests)1(ests2)]0π+

[(πt)(ests)(1)(e2πss2)]π2π}

=11e2πs{πeπsseπss2+1s2+πe2πss+e2πss2eπss2}

=11e2πs{πs(e2πseπs)+1s2(1+e2πs2eπs)}

Properties Question 7:

Find Laplace transform of 2sin22t

  1. 9s(s236)
  2. 18s(s2+36)
  3. 21s(s2+36)
  4. 16s(s2+16)

Answer (Detailed Solution Below)

Option 4 : 16s(s2+16)

Properties Question 7 Detailed Solution

We know that 2sin22t=(1cos4t)

Apply Laplace transform on both sides then we get,

LT{2sin22t}=LT{1}LT{cos4t}=1sss2+16=16s(s2+16)

Properties Question 8:

Laplace transform of f(t) is ss24.Then the f(t) is

  1. f(t) = sin(2t)
  2. f(t) = cosh(2t)
  3. f(t)= sinh(2t)
  4. f(t) = cos(2t)

Answer (Detailed Solution Below)

Option 2 : f(t) = cosh(2t)

Properties Question 8 Detailed Solution

Concept:

L1{coshωt} =ss2ω2

L1{cosh2t}=ss222

=ss24

Additional Information Some common inverse Laplace transforms are:

F(s)

ROC

f(t)

1

All s

δ (t)

1s

Re (s) > 0

u(t)

1s2

Re (s) > 0

t

n!sn+1

Re (s) > 0

tn

1s+a

Re (s) > -a

e-at

1(s+a)2

Re (s) > -a

t e-at

n!(s+a)n

Re (s) > -a

tn e-at

as2+a2

Re (s) > 0

sin at

ss2+a2

Re (s) > 0

cos at

Properties Question 9:

The Laplace transform of f(t)={tT,0<t<T1,t>T is

  1. (1esT)s2T
  2. (1esT)s2T
  3. (1+esT)s2T
  4. (1esT)s2T

Answer (Detailed Solution Below)

Option 2 : (1esT)s2T

Properties Question 9 Detailed Solution

L{f(t)}=0Test(tT)dt+Testdt

=1T0Ttestdt+Testdt

=1T[testdt1.estdtdt]0T+Testdt

=1T[testsestsdt]0T+Testdt

=1T[testsests2]0T+[ests]T

=1T[TesTsesTs2+1s2]+[0+esTs]

=(1esT)s2T

Properties Question 10:

Find the Laplace transform of {et0tsinttdt}

  1. 1s+1cot1(s+1)
  2. 1stan1(s+1)
  3. 1s+1tan1(s+1)
  4. 1scot1(s+1)

Answer (Detailed Solution Below)

Option 1 : 1s+1cot1(s+1)

Properties Question 10 Detailed Solution

Concept:

L{sin at} = as2+a2

Division by t:

L{1tf(t)}=sF(s)ds

Laplace transform of Integral:

L{0tf(t)dt=1sF(s)

Shifting property:

L{eat⋅f(t)} = F(s - a)

Calculation:

Given:

{et0tsinttdt}

Let f(t) = sin t

L{sint}=1s2+1

L{sintt}=s1(s2+1)ds=[tan1s]s

π2tan1s=cot1s

L{0tsinttdt}=1scot1s

L{et0tsinttdt}=1(s+1)cot1(s+1)

Get Free Access Now
Hot Links: teen patti winner online teen patti teen patti online game