General Solution of Equation MCQ Quiz in मल्याळम - Objective Question with Answer for General Solution of Equation - സൗജന്യ PDF ഡൗൺലോഡ് ചെയ്യുക

Last updated on Apr 18, 2025

നേടുക General Solution of Equation ഉത്തരങ്ങളും വിശദമായ പരിഹാരങ്ങളുമുള്ള മൾട്ടിപ്പിൾ ചോയ്സ് ചോദ്യങ്ങൾ (MCQ ക്വിസ്). ഇവ സൗജന്യമായി ഡൗൺലോഡ് ചെയ്യുക General Solution of Equation MCQ ക്വിസ് പിഡിഎഫ്, ബാങ്കിംഗ്, എസ്എസ്‌സി, റെയിൽവേ, യുപിഎസ്‌സി, സ്റ്റേറ്റ് പിഎസ്‌സി തുടങ്ങിയ നിങ്ങളുടെ വരാനിരിക്കുന്ന പരീക്ഷകൾക്കായി തയ്യാറെടുക്കുക

Latest General Solution of Equation MCQ Objective Questions

Top General Solution of Equation MCQ Objective Questions

General Solution of Equation Question 1:

For α, β, γ ≠ 0. If sin-1 α + sin-1 β + sin-1 γ = π and (α + β + γ) (α  - γ + β) = 3αβ then γ equal to

  1. 32
  2. 12
  3. 3122
  4. √3

Answer (Detailed Solution Below)

Option 1 : 32

General Solution of Equation Question 1 Detailed Solution

Calculation

Given

sin-1 α + sin-1 β + sin-1 γ = π

Let 

sin-1 α = A,  sin-1 β = B, sin-1 γ = C

⇒ A + B + C =  π ⇒ B + C = π - A  ⇒ A = π - (B + C)

(α + β + γ) (α  - γ + β) = 3αβ 

⇒ (α + β)2 - γ2 = 3αβ 

⇒ α2 + β2 - γ2 = αβ 

⇒ sin2A + sin2B - sin2C = sinA sinB

⇒ sin2A + sin2(B + C) sin2(B - C)  = sinA sinB

⇒ sin2A + sin(A) sin(B - C)  = sinA sinB

⇒ sinA(sin(A)  + sin(B - C))  = sinA sinB

⇒ sinA(sin(B + C)  + sin(B - C))  = sinA sinB

⇒ sinA(2sin(B)cos(C) - sinB)  = 0

⇒ sinAsinB(2cos(C) - 1 ) = 0

⇒ (2cos(C) - 1 ) = 0 {∵ α, β, γ ≠ 0)

⇒ cosC =  12

⇒ sinC =32

⇒ γ = 32 

Hence option 1 is correct

General Solution of Equation Question 2:

Which among the following is/are correct statement(s)?

1. The general value of θ satisfying the equations sin2 θ = sin2 α, cos2 θ = cos2 α and tan2 θ = tan2 α is given by θ = nπ ± α.

2. The general value of θ satisfying the equations sin θ = sin α, cos θ = cos α simultaneously is given by θ = 2nπ ± α, n ∈ Z.

Select the correct answer using the code given below

  1. Only 1
  2. Only 2
  3. Both 1 and 2
  4. Neither 1 nor 2

Answer (Detailed Solution Below)

Option 1 : Only 1

General Solution of Equation Question 2 Detailed Solution

Concept:

cos 2θ = 1 - 2 sin2 θ 

cos 2θ = 2 cos2θ - 1

cos 2θ 1+tan2θ1tan2θ

Calculator:

From statement 2

sinθ = sinα

⇒ sinθ - sinα = 0

2.cosθ+α2.sinθα2=0

So, either 

cosθ+α2=0 or sinθα2=0

Now from cosθ+α2=0

θ+α2=(2k+1)π2, k ϵ integer

⇒ θ = (2k + 1)π - α        ----(i)

Now from θα2=kπ, k ϵ integer

⇒ θ = 2kπ + α          ----(ii) 

Now, On combining equation (i) and (ii), we get 

⇒ θ = nπ + (-1)α, where α ϵ integer

So, The general solution of sinθ = sinα is θ = nπ + (-1)α

Hence, Statement 2 is not correct.

Now from statement 1

sin2 θ = sin2 α

⇒ 1cos2θ2=1cos2α2

⇒ cos 2θ = cos 2α

⇒ 2θ = 2nπ ± 2α 

θ=nπ±α, n ∈ Z

Similarly for cos2 θ = cos2 α 

⇒ cos2θ+12=cos2α+12

⇒ cos 2θ + 1 = cos 2α + 1

⇒ cos 2θ = cos 2α 

⇒ θ=nπ±α, n ∈ Z

tan2 θ = tan2 α

Componendo and dividendo

1+tan2θ1tan2θ=1+tan2α1tan2α

⇒ cos 2θ = cos 2α 

So, θ=nπ±α, n ∈ Z

So, the statement 1 is correct.

∴ Only option (i) is correct.

General Solution of Equation Question 3:

The number of solutions of the equation x3 + 2x2 + 5x + 2cosx = 0 in [0, 2π]

  1. one 
  2. two
  3. three 
  4. zero

Answer (Detailed Solution Below)

Option 4 : zero

General Solution of Equation Question 3 Detailed Solution

Calculation:

khtdjy

Given, x3 + 2x2 + 5x + 2cosx = 0

⇒ x3 + 2x2 + 5x = - 2cosx 

From the graph, we can observe that for x ∈ [0, 2π] the graphs do not intersect.

∴ The number of solutions of the equation x3 + 2x2 + 5x + 2cosx = 0 in [0, 2π] is zero.

The correct answer is Option 4.

General Solution of Equation Question 4:

The equation 3sin2x + 10 cos x – 6 = 0 is satisfied if (n ∈ I) 

  1. x = nπ + cos–1(1/3) 
  2. x = nπ – cos–1(1/3)
  3. x = 2nπ ± cos–1(1/3)
  4. x = nπ2 - cos–1(1/3)

Answer (Detailed Solution Below)

Option 3 : x = 2nπ ± cos–1(1/3)

General Solution of Equation Question 4 Detailed Solution

Concept:

If cos x = cos α, then x = 2nπ ± α, n = 0, ± 1, ± 2, … 

Calculation:

Given, 3sin2x + 10cos x - 6 = 0.

⇒ 3(1 - cos2x) + 10cos x - 6 = 0

⇒ 3 - 3cos2x + 10cos x - 6 = 0

⇒ 3cos2x - 10cos x + 3 = 0

⇒ 3cos2x - 9cos x - cos x + 3 = 0

⇒ 3cos x (cos x - 3) - (cos x - 3) = 0

⇒ (cos x - 3)(3cos x - 1) = 0

⇒ cos x = 3 or 3cos x = 1

But cos x = 3 cannot be possible as - 1 ≤ cos x ≤ 1 for all x ∈ R.

∴ 3cos x = 1

⇒ cos x = 13

⇒ cos x = cos(cos -1(13))

⇒ x = 2nπ ± cos–1(1/3)

∴ The equation is satisfied for x = x = 2nπ ± cos–1(1/3).

The correct answer is Option 3.

General Solution of Equation Question 5:

If 16sinθ,cosθ,tanθ are in G.P. then θ

  1. 2nπ±π3
  2. 2nπ±π6
  3. nπ+(1)nπ3
  4. nπ+π3

Answer (Detailed Solution Below)

Option 1 : 2nπ±π3

General Solution of Equation Question 5 Detailed Solution

According to the given condition, if a,b,c are in G.P., we have

ac=b2

Similarly,

tanθsinθ×16=cos2θ

sin2θ=6cos3θ

6cos3θ+cos2θ1=0

We get cosθ=12 by observation, since its value has to lie between 0 and 1.

Since cosθ=12, the general solution becomes 2nπ±π3

General Solution of Equation Question 6:

Let S = {θ ∈ [0, 2π) : tan (π cos θ) + tan (π sin θ) = 0} 

Then θSsin2(θ+π4) is equal to

Answer (Detailed Solution Below) 2

General Solution of Equation Question 6 Detailed Solution

Concept:

(1) General solution of tanθ = tanα is θ = nπ + α; 

α ∈ [π2,π2] n ∈ I

(2) Use a2+b2 ≤ a sin x + b cos x ≤ a2+b2

Calculation:

Given: S = {θ ∈[0, 2 λ); tan (π cos θ) + tan (π sin θ) = 0}

⇒ tan (π cos θ) = – tan (π sin θ)

⇒ tan (π cos θ) = tan (– π sin θ)

∴ π cos θ = – π sin θ; n ∈ I

π cos θ + π sin θ = nπ

cos θ + sin θ = n

Since, 2 ≤ cos θ + sin θ ≤ 2

∴ n = –1, 0, 1

Case 1 : If n = –1

cos θ sin θ = -1

⇒ cos (θπ4) = 12

⇒ cos(θπ4) = cos(3π4)

⇒ θ - π4 = 2kπ ± 3π4

⇒ θ = 2k π + π or θ = 2kπ - π2

⇒ θ = π, 3π2 

Case - 2 : If n = 0

cos θ  + sin θ = 0

⇒ cos(θπ4) = 0

⇒ θ - π4 = 2kπ ± π2

⇒ θ = 2kπ + 3π4 or θ = 2kπ - π4

⇒ θ = 3π47π4

Case - 3 : If n = 1

cosθ + sinθ = 12

⇒ cos(θπ4) = cos(π4)

⇒ θ - π4 = 2kπ ± π4

⇒ θ = 2kπ + π2 or θ = 2kπ 

⇒ θ = π2, 0

∴ θ = {0,π2,π,3π2,3π4,7π4}

So, sin(θ+π4) = 12,12,12,12

Now, θSsin2 (θ+π4) = 12 + 12 + 12 + 12 = 2

∴ The value of θSsin2(θ+π4) is 2.

General Solution of Equation Question 7:

The general solution of 3 sin2 x - 7 sin x + 2 = 0 is: 

  1. x=nπ2+(1)nsin113
  2. x=nπ+(1)nsin13
  3. x=nπ+(1)nsin113
  4. More than one of the above
  5. None of the above

Answer (Detailed Solution Below)

Option 3 : x=nπ+(1)nsin113

General Solution of Equation Question 7 Detailed Solution

Given:

 3 sin2 x - 7 sin x + 2 = 0

Concept:

Use concept of general value of sin x

x=nπ+(1)nθ

Calculation:

 3 sin2 x - 7 sin x + 2 = 0

Put sin x = y

⇒3y2 - 7y + 2 = 0

⇒3y2 - 6y - y + 2 = 0

⇒3y(y - 2) - (y - 2) = 0

⇒(y - 2)(3y - 1) = 0

⇒y = 2 , 1/3

we know that range of sin x is [-1,1] then 2 is not in range than 

⇒ sin x = 1/3

⇒ x = sin-1(1/3)

Hence the general value 

x=nπ+(1)nsin113

Hence the option (3) is correct.

General Solution of Equation Question 8:

The general solution of 3 sin2 x - 7 sin x + 2 = 0 is: 

  1. x=nπ2+(1)nsin113
  2. x=nπ+(1)nsin13
  3. x=nπ+(1)nsin113
  4. More than one of the above
  5. None of the above

Answer (Detailed Solution Below)

Option 3 : x=nπ+(1)nsin113

General Solution of Equation Question 8 Detailed Solution

Given:

 3 sin2 x - 7 sin x + 2 = 0

Concept:

Use concept of general value of sin x

x=nπ+(1)nθ

Calculation:

 3 sin2 x - 7 sin x + 2 = 0

Put sin x = y

⇒3y2 - 7y + 2 = 0

⇒3y2 - 6y - y + 2 = 0

⇒3y(y - 2) - (y - 2) = 0

⇒(y - 2)(3y - 1) = 0

⇒y = 2 , 1/3

we know that range of sin x is [-1,1] then 2 is not in range than 

⇒ sin x = 1/3

⇒ x = sin-1(1/3)

Hence the general value 

x=nπ+(1)nsin113

Hence the option (3) is correct.

General Solution of Equation Question 9:

If α is the root of equation 25 cos2 θ + 5 cos θ  - 12 = 0, where π<α<3π2. Find the value of tan α ?

  1. – 3/4
  2. 3/4
  3. – 4/3
  4. 4/3

Answer (Detailed Solution Below)

Option 2 : 3/4

General Solution of Equation Question 9 Detailed Solution

Concept:

The table below shows the sign of trigonometric functions in different quadrants:

Trigonometric Function

Quadrant I

Quadrant II

Quadrant III

Quadrant IV

Sin

+

+

-

-

Cos

+

-

-

+

Cosec

+

+

-

-

Sec

+

-

-

+

Tan

+

-

+

-

Cot

+

-

+

-

 

Calculation:

Given: α is the root of the equation 25 cos2 θ + 5 cos θ - 12 = 0

∵ α is the root of the equation 25 cos2 θ + 5 cos θ - 12 = 0

⇒ 25 cos2 α + 5 cos α – 12 = 0

Let us suppose 5 cos α = x. So, the given equation 25 cos2 θ + 5 cos θ - 12 = 0 can be written as:

⇒ x2 + x – 12 = 0

⇒ x2 + 4x – 3x – 12 = 0

⇒ (x + 4) (x - 3) = 0

⇒ x = - 4 or x = 3

Now, by substituting the value of 5 cos α = x in the above equation, we get

⇒ cos α = - 4 / 5 or cos α = 3 / 5

α(π,3π2)cosα=ve

Hence, cos α = - 4 / 5

sinα=1(45)2=±35

α(π,3π2)sinα=ve

Hence, sin α = - 3 / 5

tanα=sinαcosα=34

General Solution of Equation Question 10:

Find general value of θ when tan θ = tan α 

  1. nπ - α 
  2. nπ + α 
  3. nπ2 + α 
  4. All of the above
  5. None of the above

Answer (Detailed Solution Below)

Option 2 : nπ + α 

General Solution of Equation Question 10 Detailed Solution

Explanation:

tan θ = tan α

∴ θ = nπ + α 

Get Free Access Now
Hot Links: teen patti all app teen patti baaz teen patti sweet teen patti download teen patti master game