Evaluate using Special Integral Forms MCQ Quiz in मल्याळम - Objective Question with Answer for Evaluate using Special Integral Forms - സൗജന്യ PDF ഡൗൺലോഡ് ചെയ്യുക
Last updated on Apr 1, 2025
Latest Evaluate using Special Integral Forms MCQ Objective Questions
Top Evaluate using Special Integral Forms MCQ Objective Questions
Evaluate using Special Integral Forms Question 1:
Let \(\rm \beta(m,n)=\int_0^1x^{m-1}(1-x)^{n-1}dx\) m, n > 0 If \(\rm \int_0^1(1-x^{10})^{20}dx=a\times \beta (b,c)\) then 100 (a + b + c) equals ______.
Answer (Detailed Solution Below)
Evaluate using Special Integral Forms Question 1 Detailed Solution
Calculation:
Given, \(\rm \beta(m,n)=\int_0^1x^{m-1}(1-x)^{n-1}dx\)
Let I = \(\int_0^1 1 \cdot\left(1-x^{10}\right)^{20} d x\)
Put x10 = t ⇒ x = t1/10
⇒ \(\mathrm{dx}=\frac{1}{10}(\mathrm{t})^{-9 / 10} \mathrm{dt}\)
∴ I = \(\int_0^1(1-t)^{20} \frac{1}{10}(t)^{-9 / 10} d t\)
⇒ I = \(\frac{1}{10} \int_0^1 t^{-9 / 10}(1-t)^{20} d t\)
= \(\frac{1}{10} \int_0^1 x^{-9 / 10}(1-x)^{20} d x\)
= \(\rm \frac{1}{10}\times \beta (\frac{1}{10},21)\) = \(\rm a\times \beta (b,c)\)
⇒ a = \(\frac{1}{10}\) b = \(\frac{1}{10}\) c = 21
⇒ 100(a + b + c) = 100(\(\frac{1}{10}\) + \(\frac{1}{10}\) + 21) = 10 + 10 + 2100 = 2120
∴ The value of 100(a + b + c) is 2120.
The correct answer is Option 4.
Evaluate using Special Integral Forms Question 2:
What is the value of \(\rm \int e^x \left(\dfrac{1}{x}- \dfrac{1}{x^2}\right)dx \)
Answer (Detailed Solution Below)
Evaluate using Special Integral Forms Question 2 Detailed Solution
Concept
\(\rm \int e^x \left(f(x)+f'(x)\right)dx \) = ex f(x) + c
Calculation:
Let, \(\rm I=\int e^x \left(\dfrac{1}{x}- \dfrac{1}{x^2}\right)dx \)
Let f(x) = \(\rm 1\over x\)
⇒ \(\rm f'(x) = - {1\over x^2}\)
∴ \(\rm I=\int e^x \left(\dfrac{1}{x}- \dfrac{1}{x^2}\right)dx \)= \(\rm \int e^x \left(f(x)+f'(x)\right)dx \)
= ex f(x) + c
= \(\rm e^x ({1\over x})\) + c
Hence, option (3) is correct.