Evaluate using Special Integral Forms MCQ Quiz in मल्याळम - Objective Question with Answer for Evaluate using Special Integral Forms - സൗജന്യ PDF ഡൗൺലോഡ് ചെയ്യുക

Last updated on Apr 1, 2025

നേടുക Evaluate using Special Integral Forms ഉത്തരങ്ങളും വിശദമായ പരിഹാരങ്ങളുമുള്ള മൾട്ടിപ്പിൾ ചോയ്സ് ചോദ്യങ്ങൾ (MCQ ക്വിസ്). ഇവ സൗജന്യമായി ഡൗൺലോഡ് ചെയ്യുക Evaluate using Special Integral Forms MCQ ക്വിസ് പിഡിഎഫ്, ബാങ്കിംഗ്, എസ്എസ്‌സി, റെയിൽവേ, യുപിഎസ്‌സി, സ്റ്റേറ്റ് പിഎസ്‌സി തുടങ്ങിയ നിങ്ങളുടെ വരാനിരിക്കുന്ന പരീക്ഷകൾക്കായി തയ്യാറെടുക്കുക

Latest Evaluate using Special Integral Forms MCQ Objective Questions

Top Evaluate using Special Integral Forms MCQ Objective Questions

Evaluate using Special Integral Forms Question 1:

Let \(\rm \beta(m,n)=\int_0^1x^{m-1}(1-x)^{n-1}dx\) m, n > 0 If \(\rm \int_0^1(1-x^{10})^{20}dx=a\times \beta (b,c)\) then 100 (a + b + c) equals ______. 

  1. 1021
  2. 1120
  3. 2012
  4. 2120

Answer (Detailed Solution Below)

Option 4 : 2120

Evaluate using Special Integral Forms Question 1 Detailed Solution

Calculation:

Given, \(\rm \beta(m,n)=\int_0^1x^{m-1}(1-x)^{n-1}dx\)

Let I = \(\int_0^1 1 \cdot\left(1-x^{10}\right)^{20} d x\)

Put x10 = t ⇒ x = t1/10 

⇒ \(\mathrm{dx}=\frac{1}{10}(\mathrm{t})^{-9 / 10} \mathrm{dt}\)

∴ I = \(\int_0^1(1-t)^{20} \frac{1}{10}(t)^{-9 / 10} d t\)

⇒ I = \(\frac{1}{10} \int_0^1 t^{-9 / 10}(1-t)^{20} d t\) 

\(\frac{1}{10} \int_0^1 x^{-9 / 10}(1-x)^{20} d x\)

\(\rm \frac{1}{10}\times \beta (\frac{1}{10},21)\) = \(\rm a\times \beta (b,c)\)

⇒ a = \(\frac{1}{10}\) b = \(\frac{1}{10}\) c = 21

⇒ 100(a + b + c) = 100(\(\frac{1}{10}\) + \(\frac{1}{10}\) + 21) = 10 + 10 + 2100 = 2120

∴ The value of 100(a + b + c) is 2120.

The correct answer is Option 4.

Evaluate using Special Integral Forms Question 2:

What is the value of \(\rm \int e^x \left(\dfrac{1}{x}- \dfrac{1}{x^2}\right)dx \)

  1. \(\rm e^x ({1\over x^2})\) + c
  2. \(\rm e^x ({-1\over x^2})\) + c
  3. \(\rm e^x ({1\over x})\) + c
  4. \(\rm e^x ({-1\over x})\) + c
  5. None of these

Answer (Detailed Solution Below)

Option 3 : \(\rm e^x ({1\over x})\) + c

Evaluate using Special Integral Forms Question 2 Detailed Solution

Concept

\(\rm \int e^x \left(f(x)+f'(x)\right)dx \) = ex f(x) + c

Calculation:

Let, \(\rm I=\int e^x \left(\dfrac{1}{x}- \dfrac{1}{x^2}\right)dx \)

Let f(x) = \(\rm 1\over x\)

⇒ \(\rm f'(x) = - {1\over x^2}\)

∴ \(\rm I=\int e^x \left(\dfrac{1}{x}- \dfrac{1}{x^2}\right)dx \)\(\rm \int e^x \left(f(x)+f'(x)\right)dx \)

ex f(x) + c

\(\rm e^x ({1\over x})\) ​​+ c

Hence, option (3) is correct.

Get Free Access Now
Hot Links: teen patti chart teen patti bodhi teen patti master 2025 teen patti neta