Direct Ratio MCQ Quiz in मल्याळम - Objective Question with Answer for Direct Ratio - സൗജന്യ PDF ഡൗൺലോഡ് ചെയ്യുക

Last updated on Mar 29, 2025

നേടുക Direct Ratio ഉത്തരങ്ങളും വിശദമായ പരിഹാരങ്ങളുമുള്ള മൾട്ടിപ്പിൾ ചോയ്സ് ചോദ്യങ്ങൾ (MCQ ക്വിസ്). ഇവ സൗജന്യമായി ഡൗൺലോഡ് ചെയ്യുക Direct Ratio MCQ ക്വിസ് പിഡിഎഫ്, ബാങ്കിംഗ്, എസ്എസ്‌സി, റെയിൽവേ, യുപിഎസ്‌സി, സ്റ്റേറ്റ് പിഎസ്‌സി തുടങ്ങിയ നിങ്ങളുടെ വരാനിരിക്കുന്ന പരീക്ഷകൾക്കായി തയ്യാറെടുക്കുക

Latest Direct Ratio MCQ Objective Questions

Top Direct Ratio MCQ Objective Questions

Direct Ratio Question 1:

If cotθ = 4/3, then evaluate: (secθ(1 + cot2θ)(cosec2θ - cot2θ)) / cosec3θ.

  1. 3/4
  2. 4/5
  3. 4/3
  4. 3/5

Answer (Detailed Solution Below)

Option 1 : 3/4

Direct Ratio Question 1 Detailed Solution

Calculation:

cosec2θ - cot2θ = 1, 

cosec2θ = 1 + cot2θ 

So,

(secθ(1 + cot2θ)(cosec2θ - cot2θ)) / cosec3θ

⇒ (sec θ × cosec2θ × 1) / cosec3θ

⇒ (sec θ) / (cosec θ)

⇒ (1/cos θ) / (1/sinθ)

⇒ sinθ / cosθ

⇒ tan θ = 1/cot θ = 1/(4/3) = 3/4

∴ The corrct answer is option (1).

Direct Ratio Question 2:

If tanA=38, then the value of 3sinA+2cosA3sinA2cosA is:

  1. 1325
  2. 257
  3. 258
  4. 1321

Answer (Detailed Solution Below)

Option 2 : 257

Direct Ratio Question 2 Detailed Solution

Given:

tanA=38,

Concept used:

TanA = SinA / CosA

Calculation:

3sinA+2cosA3sinA2cosA

Dividing by CosA we get,

3 TanA + 2 / 3 TanA - 2

Now putting the value of Tan A we get,

⇒ (3×38+2)(3×382)

⇒ 257

∴ The  correct option is 2

Direct Ratio Question 3:

If tan x = 75, then the value of 9sinx425cosx15sinx+21cosx is:

  1. 0
  2. 1
  3. 0.1
  4. 0.5

Answer (Detailed Solution Below)

Option 3 : 0.1

Direct Ratio Question 3 Detailed Solution

Given

tan x = 7/5

Formula used

tan x = P/B

sin x = P/H

cos x = B/H

Calculation

tan x = 7/5 = P/B

H2 = P2 + B2

H2 = 72 + 52

H2 = 49 + 25 = 74

h = √74.

9sinx425cosx15sinx+21cosx

⇒ (9 × 7/√74 - 42/5 × 5/√74)/(15 × 7/√74 + 21 × 5/√74)

⇒ (21/√74)/(210/√74)

⇒ 21/210

⇒ 0.1

The value is 0.1

Direct Ratio Question 4:

If acot θ = b, then what will be the value of bcosθasinθbcosθ+asinθ?

  1. b2+a2b2a2
  2. b2 + a2
  3. b2a2b2+a2
  4. 0

Answer (Detailed Solution Below)

Option 3 : b2a2b2+a2

Direct Ratio Question 4 Detailed Solution

Given

a cot θ = b

Calculation

bcosθasinθbcosθ+asinθ

Dividing the whole equation by cosθ, we get:

⇒ (b - asinθ/cosθ)/(b + asinθ/cosθ)

⇒ (b - atanθ)/(b + atanθ)

⇒ (b - a × a/b)/(b + a × a/b) 

⇒ (b2 - a2)/(b2 + a2) 

The value of the expression is  (b2 - a2)/(b2 + a2) .

Direct Ratio Question 5:

If Cos A = 941, find cot A. 

  1. 940
  2. 4140
  3. 409
  4. 941

Answer (Detailed Solution Below)

Option 1 : 940

Direct Ratio Question 5 Detailed Solution

Given:

Cos A = 9/41 

Formula used:

 cot A = cos A/sin A

Cos2 A + sin2 A = 1

Calculation:

Cos2 A + sin2 A = 1

⇒ ( 9/41)2 + sin2 A = 1

⇒  sin2 A = 1 - 81/1681

 ⇒ sin2 A = 1600/1681

⇒  sin A = 40/41

 cot A = cos A/sin A

 ⇒ cot A = 9/40

∴ Option 1 is the correct answer.

Direct Ratio Question 6:

If sin θ = 12, then the value of (3cos θ - 4 cos3 θ) is:

  1. 0
  2. 1
  3. 2
  4. -1

Answer (Detailed Solution Below)

Option 1 : 0

Direct Ratio Question 6 Detailed Solution

Given:

sin θ = 12

Concept used:

Trigo

Calculation:

sin θ = 12

⇒ sinθ = sin 30°

So, θ = 30°

3cos θ - 4 cos3 θ

⇒ 3 × 32 - 4 × 338

⇒ 332332

⇒ 0

∴ The required answer is 0.

Direct Ratio Question 7:

If tan α = 6, then sec α equals to:

  1. 7
  2. 5
  3. 37
  4. 35

Answer (Detailed Solution Below)

Option 3 : 37

Direct Ratio Question 7 Detailed Solution

Given:

Tan α = 6

Concept used:

Tan θ = P/B

Sec θ = H/B

Where, P = perpendicular; B = base; H = hypotenuse

Formula used:

Pythagorean theorem:

H2 = P2 + B2

Where, P = perpendicular; B = base; H = hypotenuse

Calculation:

Tan α = 6/1 = P/B

Using Pythagorean theorem:

⇒ H2 = P2 + B2

⇒ H2 = (6)2 + (1)2

⇒ H = √37

Sec α = H/B = √37

∴ The correct answer is √37. 

Direct Ratio Question 8:

If 4 tan θ = 3, then 4sinθcosθ+14sinθ+cosθ1= _________.

  1. 1411
  2. 1211
  3. 1011
  4. 1311

Answer (Detailed Solution Below)

Option 4 : 1311

Direct Ratio Question 8 Detailed Solution

Given:

4 tan θ = 3

Calculation:

F3 SSC Arbaz 24-05-2023 Himanshu D1

Applying Pythagoras Theorem

AC2 = AB2 + BC2

AC2 = 32 + 42

AC = 5

sinθ = 3/5

cosθ =4/5

4sinθcosθ+14sinθ+cosθ1

Put the above values

⇒ 4×3/54/5+14×3/5+4/51

⇒ 12/54/5+112/5+4/51 = (124+5)/5(12+45)/5

⇒ 13/511/5 = 1311 

Option 4 is the correct answer.

Direct Ratio Question 9:

If 7 tan θ = 3, and θ is an acute angle, then 5sinθcosθ5sinθ+2cosθ is equal to:

  1. 829
  2. 1129
  3. 729
  4. 929

Answer (Detailed Solution Below)

Option 1 : 829

Direct Ratio Question 9 Detailed Solution

Given:

7tan θ = 3

Calculation:

5sinθcosθ5sinθ+2cosθ

Divide by 'cos θ' in both numerator and denominator,

⇒ 5(sinθ/cosθ)15(sinθ/cosθ)+2

⇒ 5 tanθ15 tanθ+2

⇒ [5 × 3/7 - 1] / [5 × 3/7 + 2]

⇒ [15/7 - 1] / [15/7 + 2]

⇒ [(15 - 7)/7] / [(15 + 14)/7]

⇒ [8/7] / [29/7]

⇒ 8/29

∴ The correct answer is option (1).

Direct Ratio Question 10:

Evaluate the value of (cosec56 cos34cos59 cosec31).

  1. 1
  2. 2
  3. -1
  4. 0

Answer (Detailed Solution Below)

Option 4 : 0

Direct Ratio Question 10 Detailed Solution

Given:

The expression to evaluate is: (cosec56cos34cos59cosec31)

Formula used:

The cosecant function is defined as: cosecx=1sinx

Properties used:

cosecx=1sinx

cosx is the cosine of angle x.

Step 1: Substitute the value of cosecant using the identity cosecx=1sinx into the expression:

We now have: 1sin56cos34cos591sin31

Step 2: The expression becomes:

cos34sin56cos59sin31

Step 2: Apply the identity cos(90θ)=sinθ to both terms:

cos(9056)sin56cos59sin(9059)

Step 3: Simplify the expression using the identity:

sin56sin56cos59cos59

Step 4: Simplify the terms:

11

∴ The value of the expression is 0

Get Free Access Now
Hot Links: teen patti club apk teen patti chart teen patti live teen patti master 2023 teen patti gold online