Laurent's Series MCQ Quiz - Objective Question with Answer for Laurent's Series - Download Free PDF

Last updated on Apr 14, 2025

Latest Laurent's Series MCQ Objective Questions

Laurent's Series Question 1:

The first few terms in the Laurent series for 1(z1)(z2) in the region 1|z|2 and around z = 1 is 

  1. 12[1+z+z2+][1+z2+z24+z38+]
  2. 11zz(1z)2+(1z)3+
  3. 1z2[1+2z+4z2+][1+2z+4z2+]
  4. 2(z1)+5(z1)2+7(z1)3+
  5. Not Attempted

Answer (Detailed Solution Below)

Option 2 : 11zz(1z)2+(1z)3+

Laurent's Series Question 1 Detailed Solution

Calculation:

1(z1)(z2)=1z21z1

⇒ 11z+1(z1)1=11z(1+(1z))1

⇒ 11z[1+(1z)+(1)(2)2!(1z)2+(1)(2)(3)3!(1z)3]

⇒ 11z[z+(1z)2(1z)3+]

Laurent's Series Question 2:

The first few terms in the Laurent series for 1(z1)(z2) in the region 1|z|2 and around z = 1 is 

  1. 12[1+z+z2+][1+z2+z24+z38+]
  2. 11zz(1z)2+(1z)3+
  3. 1z2[1+2z+4z2+][1+2z+4z2+]
  4. 2(z1)+5(z1)2+7(z1)3+

Answer (Detailed Solution Below)

Option 2 : 11zz(1z)2+(1z)3+

Laurent's Series Question 2 Detailed Solution

Calculation:

1(z1)(z2)=1z21z1

⇒ 11z+1(z1)1=11z(1+(1z))1

⇒ 11z[1+(1z)+(1)(2)2!(1z)2+(1)(2)(3)3!(1z)3]

⇒ 11z[z+(1z)2(1z)3+]

Laurent's Series Question 3:

The coefficient of z2 in the expansion of f(z)=1(z1)(z2) in the region 1 < |z| < 2

  1. - 1/4
  2. 1/4
  3. - 1/8
  4. 1/8

Answer (Detailed Solution Below)

Option 3 : - 1/8

Laurent's Series Question 3 Detailed Solution

Concept:

The given region is a ring-shaped region bounded by two concentric circles with center at origin.

The expansion will be Laurent's series.

Calculation:

Given function is f(z)=1(z1)(z2)

By partial fractions,

f(z)=1z21z1=12(1z2)1+(1z)1

Now using standard expansions,

f(z)=12(1+z2+z24+z38+)1z(1+z1+z2+z3+)

⇒ f(z)=z4z3z2z11214z18z2116z3

the coefficient of z2 is – 1/8

Laurent's Series Question 4:

The value of 0πsin2θcos4θdθ is

  1. π
  2. π2/32
  3. π/16

Answer (Detailed Solution Below)

Option 4 : π/16

Laurent's Series Question 4 Detailed Solution

Explanation:

I=0πsin2θcos4θdθ=0π(1cos2θ)cos4θdθ=0πcos4θdθ0πcos6θdθ

Now it is known that cosnθdθ=1nsinθcosn1θ+n1ncosn2θdθ

Applying this result to the second term 0πcos6θdθ(n=6)of the expression of I we get,

I=0πcos4θdθ[16sinθcos5θ]0π6160πcos62θdθ=160πcos4θdθ

Again, applying this result to the term 0πcos4θdθ(n=4)of the expression of I we get,

I=160πcos4θdθ=16{[14sinθcos41θ]0π4140πcos42θdθ}=16340πcos2θdθ

I=1160π2cos2θdθ=1160π(1+cos2θ)dθ=116[1sin2θ2]0π=116×π0=π16

Laurent's Series Question 5:

The Laurent series expansion of the function f(z)=1ez1 valid in the region 0 < |z| < 2, is given by

  1. f(z)=1z12+13z1120z3+
  2. f(z)=1z+1213z+1120z3+
  3. f(z)=1z12+112z1720z3+
  4. f(z)=1z12+112z1120z3+

Answer (Detailed Solution Below)

Option 3 : f(z)=1z12+112z1720z3+

Laurent's Series Question 5 Detailed Solution

ez1=n=0znn!1 

=n=1znn! 

=zn=0zn(n+1)! 

ex – 1 has a zero at ‘0’ of multiplicity one and hence f(z) has pole at 0 of order 1. So, the Laurent series f(z) is given by

f(z)=n=1anzn

=a1z+a0+a1z+a2z2+a3z3+ 

Since (ez – 1) f(z) = 1

(a1z+a0+a1z+a2z2+a3z3)z(1+z2+z26+z34+z4120+)=1 

(a1+a0z+a1z2+a2z3+a3z4+)(1+z2+z26+z324+z4120+)=1 

By comparing both the sides,

a-1 = 1

a0+a12=0a0=12 

Similarly, a1=112,a2=0,a3=1720 

f(z)=1z12+z12z3720+

Top Laurent's Series MCQ Objective Questions

In the Laurent expansion of f(z)=1(z1)(z2) valid in the region 1 < |z| < 2, the co-efficient of 1z2 is

  1. 0
  2. 1/2
  3. 1
  4. -1

Answer (Detailed Solution Below)

Option 4 : -1

Laurent's Series Question 6 Detailed Solution

Download Solution PDF

Concept:

Laurent series of f(z) is given by:

f(z)=n=1anzn

=a1z1+a0+a1z+a2z2+a3z3+

Calculation:

Given:

f(z)=1(z1)(z2)=1z21z1

The given region is 1 < |z| < 2

1<|z|1|z|<1

|z|<2|z|2<1

f(z)=12(z21)1z(11z)

=12(1z2)1z(11z)

=12(1z2)11z(11z)1

=12[1+z2+(z2)2+]1z[1+1z+(1z)2+]

=[12z4z28+][1z+1z2+1z3+]

Co-efficient of 1z2is -1

The value of 0πsin2θcos4θdθ is

  1. π
  2. π2/32
  3. π/16

Answer (Detailed Solution Below)

Option 4 : π/16

Laurent's Series Question 7 Detailed Solution

Download Solution PDF

Explanation:

I=0πsin2θcos4θdθ=0π(1cos2θ)cos4θdθ=0πcos4θdθ0πcos6θdθ

Now it is known that cosnθdθ=1nsinθcosn1θ+n1ncosn2θdθ

Applying this result to the second term 0πcos6θdθ(n=6)of the expression of I we get,

I=0πcos4θdθ[16sinθcos5θ]0π6160πcos62θdθ=160πcos4θdθ

Again, applying this result to the term 0πcos4θdθ(n=4)of the expression of I we get,

I=160πcos4θdθ=16{[14sinθcos41θ]0π4140πcos42θdθ}=16340πcos2θdθ

I=1160π2cos2θdθ=1160π(1+cos2θ)dθ=116[1sin2θ2]0π=116×π0=π16

Laurent's Series Question 8:

In the Laurent expansion of f(z)=1(z1)(z2) valid in the region 1 < |z| < 2, the co-efficient of 1z2 is

  1. 0
  2. 1/2
  3. 1
  4. -1

Answer (Detailed Solution Below)

Option 4 : -1

Laurent's Series Question 8 Detailed Solution

Concept:

Laurent series of f(z) is given by:

f(z)=n=1anzn

=a1z1+a0+a1z+a2z2+a3z3+

Calculation:

Given:

f(z)=1(z1)(z2)=1z21z1

The given region is 1 < |z| < 2

1<|z|1|z|<1

|z|<2|z|2<1

f(z)=12(z21)1z(11z)

=12(1z2)1z(11z)

=12(1z2)11z(11z)1

=12[1+z2+(z2)2+]1z[1+1z+(1z)2+]

=[12z4z28+][1z+1z2+1z3+]

Co-efficient of 1z2is -1

Laurent's Series Question 9:

In the Laurent series expression of f(z)=1(z1)(z2) valid for 0 < |z - 1|< 1, the co-efficient of 1(z1) is

  1. -2
  2. -1
  3. 0
  4. 1

Answer (Detailed Solution Below)

Option 2 : -1

Laurent's Series Question 9 Detailed Solution

Concept:

Laurentz Series is obtained by the arrangement and manipulation of standard series or expansions, i.e.

(1 - x)-1 = 1 + x + x2 + x3 + …… |x| < 1

(1 + x)-1 = 1 – x + x2 – x3 + ….. |x| < 1

(1 - x)-2 = 1 + 2x + 3x2 + ….. |x| < 1

(1 + x)-2 1 – 2x + 3x2 – 4x2 + …. |x| < 1

Observe that in all the expansions; |x| should be less than 1.

 ∴ We need to manipulate the variable to satisfy the above condition.

Calculation:

Given:

f(z)=1(z1)(z2)

=1z21z1

=1(z11)1(z1)

=1[1(z1)]1(z1)

= -1 [1 - (z - 1)]-1 - [z - 1]-1

= -[z - 1]-1 - [1 + (z - 1) + (z - 1)2 + (z - 1)3 +…]

Co-efficient of 1z1 is -1

Laurent's Series Question 10:

Expand the function 1(z1)(z2) in Laurent’s series for 1 < |z| < 2

  1. 1z+2z2+3z3+
  2. z3z2z11214z18z2116z3
  3. 1z2+3z2+7z4+
  4. None of the above

Answer (Detailed Solution Below)

Option 2 : z3z2z11214z18z2116z3

Laurent's Series Question 10 Detailed Solution

Concept:

Laurent Series:

If f(z) is analytic at every point inside and on the boundary of a ring-shaped region 'R' bounded by two concentric circle C1 and C2 having centre at 'a' & respective radii r1 and r2 (r1 > r2).

f(z)=a0+a1(za)+a2(za)2+.....+an(za)n+a1(za)1+a2(za)2+....+an(za)n

n=0an(za)n+n=1an(za)n

an(za)nwherean=12πif(z)(za)n+1dz

Calculation:

Given:

f(z)=1(z1)(z2) and 1 < |z| < 2

Here region of convergence is 1 < |z| and |z| < 2

1|z|<1and|z|2<1

f(z)=1(z1)(z2)1(z2)1(z1)

1(z2)=12(1z2)12(1z2)1

1(z1)=1z(11z)1z(11z)1

1(z2)1(z1)=12(1z2)11z(11z)1

12(1+z2+z24+z38+)1z(1+1z+1z2+1z3+)

z3z2z11214z18z2116z3

Laurent's Series Question 11:

The Laurent’s series of f(z)=z/((z2+1)(z2+4)) is, where |z| < 1

  1. 14z516z3+2164z5
  2. 1214z2+516z4+2164z6
  3. 12z34z3+158z5
  4. 12+12z2+34z4+158z6

Answer (Detailed Solution Below)

Option 1 : 14z516z3+2164z5

Laurent's Series Question 11 Detailed Solution

f(z)=z(z2+1)(z2+4)=z3(z2+1)z3(z2+4),|z|<1|z|2<1f(z)=z3(1z2+z4)z12(1z24+z416)f(z)=14z516z3+2164z5

Laurent's Series Question 12:

Find the Laurent expansion of f(z)=7z2(z+1)z(z2) in the region 1 < z + 1 < 3

  1. [2(z+1)+1(z+1)2+1(z+1)3+]43[1+z+13+(z+1)232+(z+1)33+]
  2. 43[1+13(z+1)+132(z+1)2+133(z+1)3+]+[2(z+1)+(z+1)2+(z+1)3+]
  3. 23[1+13(z+1)+132(z+1)2+133(z+1)3+]+[2(z+1)+(z+1)2+(z+1)3+]
  4. [2(z+1)+1(z+1)2+1(z+1)3+]23[1+z+13+(z+1)232+(z+1)33+]

Answer (Detailed Solution Below)

Option 4 : [2(z+1)+1(z+1)2+1(z+1)3+]23[1+z+13+(z+1)232+(z+1)33+]

Laurent's Series Question 12 Detailed Solution

Calculation:

Let z +1 = u ⇒ z = u – 1

f(z)=7z2(z+1)z(z2)

=7(u1)2(u1+1)(u1)(u12)=7u9u(u1)(u3)

=3u+1u(11u)23(1u3)

=3u+1u(11u)23(1u3)1

Given 1 < z + 1 < 3

⇒ 1 < u < 3

1u<1,u3<1

f(z)=3u+1u(1+1u+1u2+1u3+)23(1+u3+u232+4333+)

=[2u+1u2+1u3+]23(1+u3+u232+4333+)

f(z)=[2z+1+1(Z+1)2+1(Z+1)3+]23(1+z+13+(Z+1)232+(z+1)233+)

Laurent's Series Question 13:

The coefficient of z2 in the expansion of f(z)=1(z1)(z2) in the region 1 < |z| < 2

  1. - 1/4
  2. 1/4
  3. - 1/8
  4. 1/8

Answer (Detailed Solution Below)

Option 3 : - 1/8

Laurent's Series Question 13 Detailed Solution

Concept:

The given region is a ring-shaped region bounded by two concentric circles with center at origin.

The expansion will be Laurent's series.

Calculation:

Given function is f(z)=1(z1)(z2)

By partial fractions,

f(z)=1z21z1=12(1z2)1+(1z)1

Now using standard expansions,

f(z)=12(1+z2+z24+z38+)1z(1+z1+z2+z3+)

⇒ f(z)=z4z3z2z11214z18z2116z3

the coefficient of z2 is – 1/8

Laurent's Series Question 14:

The first few terms in the Laurent series for 1(z1)(z2) in the region 1|z|2 and around z = 1 is 

  1. 12[1+z+z2+][1+z2+z24+z38+]
  2. 11zz(1z)2+(1z)3+
  3. 1z2[1+2z+4z2+][1+2z+4z2+]
  4. 2(z1)+5(z1)2+7(z1)3+

Answer (Detailed Solution Below)

Option 2 : 11zz(1z)2+(1z)3+

Laurent's Series Question 14 Detailed Solution

Calculation:

1(z1)(z2)=1z21z1

⇒ 11z+1(z1)1=11z(1+(1z))1

⇒ 11z[1+(1z)+(1)(2)2!(1z)2+(1)(2)(3)3!(1z)3]

⇒ 11z[z+(1z)2(1z)3+]

Laurent's Series Question 15:

The value of 0πsin2θcos4θdθ is

  1. π
  2. π2/32
  3. π/16

Answer (Detailed Solution Below)

Option 4 : π/16

Laurent's Series Question 15 Detailed Solution

Explanation:

I=0πsin2θcos4θdθ=0π(1cos2θ)cos4θdθ=0πcos4θdθ0πcos6θdθ

Now it is known that cosnθdθ=1nsinθcosn1θ+n1ncosn2θdθ

Applying this result to the second term 0πcos6θdθ(n=6)of the expression of I we get,

I=0πcos4θdθ[16sinθcos5θ]0π6160πcos62θdθ=160πcos4θdθ

Again, applying this result to the term 0πcos4θdθ(n=4)of the expression of I we get,

I=160πcos4θdθ=16{[14sinθcos41θ]0π4140πcos42θdθ}=16340πcos2θdθ

I=1160π2cos2θdθ=1160π(1+cos2θ)dθ=116[1sin2θ2]0π=116×π0=π16

Get Free Access Now
Hot Links: teen patti master app teen patti master real cash teen patti master 2024 teen patti 100 bonus