Lagrangian and Hamiltonian Formalism MCQ Quiz - Objective Question with Answer for Lagrangian and Hamiltonian Formalism - Download Free PDF

Last updated on Jul 1, 2025

Latest Lagrangian and Hamiltonian Formalism MCQ Objective Questions

Lagrangian and Hamiltonian Formalism Question 1:

The Lagrangian of a system is 
                       \( L = \frac{15}{2} m \dot{x}^2 + 6 m \dot{x} \dot{y} + 3 m \dot{y}^2 - m g (x + 2 y) \)
Which one of the following is conserved?

  1. 12𝑥˙+3𝑦˙ 
  2. 12𝑥˙−3y
  3. 3𝑥˙−12𝑦˙ 
  4.  3𝑥˙+3𝑦˙

Answer (Detailed Solution Below)

Option 1 : 12𝑥˙+3𝑦˙ 

Lagrangian and Hamiltonian Formalism Question 1 Detailed Solution

Solution:

L = (15/2) m x2 + 6mx + 3my2 − mg(x + 2y)

⇒  (∂L/∂) − ∂L/∂x = 0 ⇔ 15m + 6mÿ + mg = 0 ........(1)

⇒  (∂L/∂) − ∂L/∂y = 0 ⇔ 6m + 6mÿ + 2mg = 0 .......(2)

Use operation 2(1) − (2)

24m + 6 = 0 ⇒ d/dt (4x + y) = 0 ⇒ 4 + = 0 ⇒ 12 + 3 = c

Lagrangian and Hamiltonian Formalism Question 2:

The point of support of a simple pendulum, of mass 𝑚 and length 𝑙, is attached to the roof of a taxi as shown in the figure. The taxi is moving with uniform velocity 𝑣. The Lagrangian for the 
qImage682c5bc2ce4c4eeac0a3f05f
pendulum is

  1. L = \(\frac{1}{2}\)ml2\(\theta\)2+\(\frac{1}{2}\)mv+ 𝑚𝑙𝑣cos 𝜃𝜃˙ − 𝑚𝑔𝑙cos 𝜃 
  2. L = \(\frac{1}{2}\)ml2\(\theta\)2+\(\frac{1}{2}\)mv𝑚𝑙𝑣cos 𝜃𝜃˙ + 𝑚𝑔𝑙cos 𝜃 
  3. L = \(\frac{1}{2}\)ml2\(\theta\)2+\(\frac{1}{2}\)mv𝑚𝑙𝑣sin 𝜃𝜃˙ + 𝑚𝑔𝑙cos 𝜃 
  4. L = \(\frac{1}{2}\)ml2\(\theta\)2+\(\frac{1}{2}\)mv𝑚𝑙𝑣sin 𝜃𝜃˙ − 𝑚𝑔𝑙cos 𝜃 

Answer (Detailed Solution Below)

Option 2 : L = \(\frac{1}{2}\)ml2\(\theta\)2+\(\frac{1}{2}\)mv𝑚𝑙𝑣cos 𝜃𝜃˙ + 𝑚𝑔𝑙cos 𝜃 

Lagrangian and Hamiltonian Formalism Question 2 Detailed Solution

Calculation:

The Lagrangian is given by L = T - V

T = (1/2) m ( 2 + ẏ2 )

The x-position at time t is: x = v t + l sinθ ⇒ ẋ = v + l cosθ θ̇

The y-position at time t is: y = -l cosθ ⇒ ẏ =  l sinθ θ̇

Thus, T = (1/2) m ( v2 + l2 θ̇2 + 2 v l cosθ θ̇ )

And, V = -m g y = -m g l cosθ

Therefore, the Lagrangian is:

L = (1/2) m l2 θ̇2 + (1/2) m v2 + m l v cosθ θ̇ + m g l cosθ

Lagrangian and Hamiltonian Formalism Question 3:

A particle of mass m slides under the gravity without friction along the parabolic path y = ax2 as shown in the figure. Here ‘a' is a constant -

qImage672a59386b752d0aee567fe7

The Lagrangian for this particle is given by-

  1. \(\mathrm{L}=\frac{1}{2} \mathrm{~m}\dot{\mathrm{x}}^{2}+\mathrm{mg} \mathrm{ax}^{2}\)
  2. \(\mathrm{L}=\frac{1}{2} \mathrm{~m}\left({1}+4 \mathrm{a}^{2} \mathrm{x}^{2}\right) \dot{\mathrm{x}}^{2}-\mathrm{mg\ ax}^{2}\)
  3. \(\mathrm{L}=\frac{1}{2} \mathrm{~m}\left(1+4 \mathrm{a}^{2} \mathrm{x}^{2}\right) \dot{\mathrm{x}}^{2}+\mathrm{mg\ ax}^{2}\)
  4. \(\mathrm{L}=\frac{1}{2} \mathrm{~m} \dot{\mathrm{x}}^{2}-\mathrm{mg\ ax}^{2}\)

Answer (Detailed Solution Below)

Option 2 : \(\mathrm{L}=\frac{1}{2} \mathrm{~m}\left({1}+4 \mathrm{a}^{2} \mathrm{x}^{2}\right) \dot{\mathrm{x}}^{2}-\mathrm{mg\ ax}^{2}\)

Lagrangian and Hamiltonian Formalism Question 3 Detailed Solution

Calculation:

We are given a particle of mass m" id="MathJax-Element-174-Frame" role="presentation" style="position: relative;" tabindex="0">m sliding under the influence of gravity without friction along a parabolic path described by y=ax2" id="MathJax-Element-175-Frame" role="presentation" style="position: relative;" tabindex="0">y=ax2 , where a" id="MathJax-Element-176-Frame" role="presentation" style="position: relative;" tabindex="0">a is a constant.

To determine the Lagrangian L" id="MathJax-Element-177-Frame" role="presentation" style="position: relative;" tabindex="0">L for the particle, we need to consider the kinetic and potential energies of the system.

The kinetic energy T" id="MathJax-Element-178-Frame" role="presentation" style="position: relative;" tabindex="0">T of the particle can be expressed as:

 

T=12m(x˙2+y˙2)" id="MathJax-Element-179-Frame" role="presentation" style="text-align: center; position: relative;" tabindex="0">T=12m(x˙2+y˙2)

Since y=ax2" id="MathJax-Element-180-Frame" role="presentation" style="position: relative;" tabindex="0">y=ax2 , differentiating with respect to time t" id="MathJax-Element-181-Frame" role="presentation" style="position: relative;" tabindex="0">t gives:

 

y˙=dydt=ddt(ax2)=2axx˙" id="MathJax-Element-182-Frame" role="presentation" style="text-align: center; position: relative;" tabindex="0">y˙=dydt=ddt(ax2)=2axx˙

Substituting y˙" id="MathJax-Element-183-Frame" role="presentation" style="position: relative;" tabindex="0">y˙ into the expression for kinetic energy, we get:

 

T=12m(x˙2+(2axx˙)2)=12m(x˙2+4a2x2x˙2)=12m(1+4a2x2)x˙2" id="MathJax-Element-184-Frame" role="presentation" style="text-align: center; position: relative;" tabindex="0">T=12m(x˙2+(2axx˙)2)=12m(x˙2+4a2x2x˙2)=12m(1+4a2x2)x˙2

The potential energy V" id="MathJax-Element-185-Frame" role="presentation" style="position: relative;" tabindex="0">V of the particle due to gravity is given by:

 

V=mgy=mg(ax2)=mgax2" id="MathJax-Element-186-Frame" role="presentation" style="text-align: center; position: relative;" tabindex="0">V=mgy=mg(ax2)=mgax2

The Lagrangian L" id="MathJax-Element-187-Frame" role="presentation" style="position: relative;" tabindex="0">L is the difference between the kinetic and potential energies:

 

L=TV=12m(1+4a2x2)x˙2mgax2" id="MathJax-Element-188-Frame" role="presentation" style="text-align: center; position: relative;" tabindex="0">L=TV=12m(1+4a2x2)x˙2mgax2

Final Answer: The correct Lagrangian for the particle is given by option 2:

 

L=12 m(1+4a2x2)x˙2mg ax2" id="MathJax-Element-189-Frame" role="presentation" style="text-align: center; position: relative;" tabindex="0">L=12 m(1+4a2x2)x˙2mg ax2

Lagrangian and Hamiltonian Formalism Question 4:

The Lagrangian of a particle in one dimension is L = \(\frac{m}{2}\dot{x}^2-ax^2-V_0e^{-10x}\) where a and V0 are positive constants. The best qualitative representation of a trajectory in the phase space is

  1. qImage644a72b935759d4714bfa840
  2. qImage644a72b935759d4714bfa845
  3. qImage644a72ba35759d4714bfa84c
  4. qImage644a72ba35759d4714bfa866

Answer (Detailed Solution Below)

Option 2 : qImage644a72b935759d4714bfa845

Lagrangian and Hamiltonian Formalism Question 4 Detailed Solution

Explanation:

Corresponding Hamiltonian is given as :

\(H=\frac{P^2}{2m}+ax^2+V_0e^{−10x}\)

Now, clearly, this is not an elliptical relation between p and x. So, we can eliminate options 3 and 4.

  • Potential energy \(V(x)=ax^2+V_0e^{−10x}\) has its minimum at x>0.
  • When we decrease energy, the phase space closed curve shrinks at a potential minimum or we can say stable equilibrium.
  • First graph is to shrink at \(x_0<0\).
  • The second graph is to shrink at \(x_0>0\). Hence, is the answer.

Lagrangian and Hamiltonian Formalism Question 5:

The Lagrangian of a system of two particles is L = \(\frac{1}{2}\dot{x}^2_1+2\dot{x}^2_2-\frac{1}{2}(x^2_1+x^2_2+x_1x_2)\). The normal frequencies are best approximated by

  1. 1.2 and 0.7
  2. 1.5 and 0.5
  3. 1.7 and 0.5
  4. 1.0 and 0.4

Answer (Detailed Solution Below)

Option 4 : 1.0 and 0.4

Lagrangian and Hamiltonian Formalism Question 5 Detailed Solution

Explanation:

The equations of motion for the system in terms of the normal coordinates are obtained by applying Euler-Lagrange equations for i = 1, and i = 2.

Euler-Lagrange equations are: \(\frac d{dt} (\frac{∂L}{∂ẋᵢ}) - \frac{∂L}{∂xᵢ} = 0\) for i = 1, 2. So the equations of motion are \( \ddot x₁ - x₁ - 0.5x₂ = 0\) ...(1) & \(4\ddot x₂ - 0.5x₁ - x₂ = 0\) ....(2) 

Solve the characteristic equation for eigenvalues (which correspond to the squares of the normal mode frequencies), which is in the form of \( |m - λI| = 0\), where m is the 2x2 matrix of coefficients of terms linear in x, I is the 2x2 identity matrix and λ are the eigenvalues.

This equation gives us a quadratic equation for the eigenvalues: \((1 - λ)(4 - λ) - (0.5)(0.5) = λ² - 5λ + 4 - 0.25 = λ² - 5λ + 3.75 = 0\)

Solving this quadratic equation for λ gives: \(λ = \frac {[5 ± \sqrt{(5)² - 15}]}{(2\times1)} = \frac {[5 ± \sqrt{(25 - 15)]}} { 2} = \frac{[5 ± \sqrt{10}]}{ 2} = \frac {[5 ± √10]} { 2 }\)

The corresponding frequencies are the square roots of these eigenvalues: \(ω = \sqrt{(λ)} = \sqrt{\frac{5 ± √10}{ 2}}\)

So we have two frequencies, ω₁ and ω₂: \( ω₁ = \sqrt{5 - √10}\times{ 2} = 0.4\) (approximately, when rounding) \(ω₂ = \sqrt{\frac {[5 + √10]}{ 2} }= 1\)

Top Lagrangian and Hamiltonian Formalism MCQ Objective Questions

Which of the following terms, when added to the Lagrangian L(x, y, \(\dot x\), \(\dot y\)) of a system with two degrees of freedom, will not change the equations of motion?

  1. \(x\ddot x - y\ddot y\)
  2. \(x\ddot y - y\ddot x\)
  3. \(x\dot y - y\dot x\)
  4. \(y{\dot x^2} + x{\dot y^2}\)

Answer (Detailed Solution Below)

Option 2 : \(x\ddot y - y\ddot x\)

Lagrangian and Hamiltonian Formalism Question 6 Detailed Solution

Download Solution PDF

Concept:

The Lagranges equation of motion of a system is given by

\({d \over dt} {\partial L \over \partial \dot{q}} - {\partial L \over \partial q} = 0\)

Calculation:

The Lagrangian L depends on 

L(x,y,\(̇ x\),\(̇ y\))

\({d \over dt} {\partial L \over \partial \dot{x}} - {\partial L \over \partial x} = 0\)

\({d \over dt} {\partial L \over \partial \dot{ y}} - {\partial L \over \partial y} = 0 \)

L' = L(x,y,\(\dot x\),\(\dot{y}\))

\({d' \over dt'} {\partial L' \over \partial x} - {\partial L' \over \partial x} = ​​{d \over dt} {\partial L \over \partial x} - {\partial L \over \partial x}+ \ddot{y} = 0\)

\(\dot{y} = c_1\)

Similarly \(\dot{x} = c_2\)

The correct answer is option (2).

Lagrangian and Hamiltonian Formalism Question 7:

Which of the following terms, when added to the Lagrangian L(x, y, \(\dot x\), \(\dot y\)) of a system with two degrees of freedom, will not change the equations of motion?

  1. \(x\ddot x - y\ddot y\)
  2. \(x\ddot y - y\ddot x\)
  3. \(x\dot y - y\dot x\)
  4. \(y{\dot x^2} + x{\dot y^2}\)

Answer (Detailed Solution Below)

Option 2 : \(x\ddot y - y\ddot x\)

Lagrangian and Hamiltonian Formalism Question 7 Detailed Solution

Concept:

The Lagranges equation of motion of a system is given by

\({d \over dt} {\partial L \over \partial \dot{q}} - {\partial L \over \partial q} = 0\)

Calculation:

The Lagrangian L depends on 

L(x,y,\(̇ x\),\(̇ y\))

\({d \over dt} {\partial L \over \partial \dot{x}} - {\partial L \over \partial x} = 0\)

\({d \over dt} {\partial L \over \partial \dot{ y}} - {\partial L \over \partial y} = 0 \)

L' = L(x,y,\(\dot x\),\(\dot{y}\))

\({d' \over dt'} {\partial L' \over \partial x} - {\partial L' \over \partial x} = ​​{d \over dt} {\partial L \over \partial x} - {\partial L \over \partial x}+ \ddot{y} = 0\)

\(\dot{y} = c_1\)

Similarly \(\dot{x} = c_2\)

The correct answer is option (2).

Lagrangian and Hamiltonian Formalism Question 8:

The Lagrangian of a system is 
                       \( L = \frac{15}{2} m \dot{x}^2 + 6 m \dot{x} \dot{y} + 3 m \dot{y}^2 - m g (x + 2 y) \)
Which one of the following is conserved?

  1. 12𝑥˙+3𝑦˙ 
  2. 12𝑥˙−3y
  3. 3𝑥˙−12𝑦˙ 
  4.  3𝑥˙+3𝑦˙

Answer (Detailed Solution Below)

Option 1 : 12𝑥˙+3𝑦˙ 

Lagrangian and Hamiltonian Formalism Question 8 Detailed Solution

Solution:

L = (15/2) m x2 + 6mx + 3my2 − mg(x + 2y)

⇒  (∂L/∂) − ∂L/∂x = 0 ⇔ 15m + 6mÿ + mg = 0 ........(1)

⇒  (∂L/∂) − ∂L/∂y = 0 ⇔ 6m + 6mÿ + 2mg = 0 .......(2)

Use operation 2(1) − (2)

24m + 6 = 0 ⇒ d/dt (4x + y) = 0 ⇒ 4 + = 0 ⇒ 12 + 3 = c

Lagrangian and Hamiltonian Formalism Question 9:

The point of support of a simple pendulum, of mass 𝑚 and length 𝑙, is attached to the roof of a taxi as shown in the figure. The taxi is moving with uniform velocity 𝑣. The Lagrangian for the 
qImage682c5bc2ce4c4eeac0a3f05f
pendulum is

  1. L = \(\frac{1}{2}\)ml2\(\theta\)2+\(\frac{1}{2}\)mv+ 𝑚𝑙𝑣cos 𝜃𝜃˙ − 𝑚𝑔𝑙cos 𝜃 
  2. L = \(\frac{1}{2}\)ml2\(\theta\)2+\(\frac{1}{2}\)mv𝑚𝑙𝑣cos 𝜃𝜃˙ + 𝑚𝑔𝑙cos 𝜃 
  3. L = \(\frac{1}{2}\)ml2\(\theta\)2+\(\frac{1}{2}\)mv𝑚𝑙𝑣sin 𝜃𝜃˙ + 𝑚𝑔𝑙cos 𝜃 
  4. L = \(\frac{1}{2}\)ml2\(\theta\)2+\(\frac{1}{2}\)mv𝑚𝑙𝑣sin 𝜃𝜃˙ − 𝑚𝑔𝑙cos 𝜃 

Answer (Detailed Solution Below)

Option 2 : L = \(\frac{1}{2}\)ml2\(\theta\)2+\(\frac{1}{2}\)mv𝑚𝑙𝑣cos 𝜃𝜃˙ + 𝑚𝑔𝑙cos 𝜃 

Lagrangian and Hamiltonian Formalism Question 9 Detailed Solution

Calculation:

The Lagrangian is given by L = T - V

T = (1/2) m ( 2 + ẏ2 )

The x-position at time t is: x = v t + l sinθ ⇒ ẋ = v + l cosθ θ̇

The y-position at time t is: y = -l cosθ ⇒ ẏ =  l sinθ θ̇

Thus, T = (1/2) m ( v2 + l2 θ̇2 + 2 v l cosθ θ̇ )

And, V = -m g y = -m g l cosθ

Therefore, the Lagrangian is:

L = (1/2) m l2 θ̇2 + (1/2) m v2 + m l v cosθ θ̇ + m g l cosθ

Lagrangian and Hamiltonian Formalism Question 10:

A particle of mass m slides under the gravity without friction along the parabolic path y = ax2 as shown in the figure. Here ‘a' is a constant -

qImage672a59386b752d0aee567fe7

The Lagrangian for this particle is given by-

  1. \(\mathrm{L}=\frac{1}{2} \mathrm{~m}\dot{\mathrm{x}}^{2}+\mathrm{mg} \mathrm{ax}^{2}\)
  2. \(\mathrm{L}=\frac{1}{2} \mathrm{~m}\left({1}+4 \mathrm{a}^{2} \mathrm{x}^{2}\right) \dot{\mathrm{x}}^{2}-\mathrm{mg\ ax}^{2}\)
  3. \(\mathrm{L}=\frac{1}{2} \mathrm{~m}\left(1+4 \mathrm{a}^{2} \mathrm{x}^{2}\right) \dot{\mathrm{x}}^{2}+\mathrm{mg\ ax}^{2}\)
  4. \(\mathrm{L}=\frac{1}{2} \mathrm{~m} \dot{\mathrm{x}}^{2}-\mathrm{mg\ ax}^{2}\)

Answer (Detailed Solution Below)

Option 2 : \(\mathrm{L}=\frac{1}{2} \mathrm{~m}\left({1}+4 \mathrm{a}^{2} \mathrm{x}^{2}\right) \dot{\mathrm{x}}^{2}-\mathrm{mg\ ax}^{2}\)

Lagrangian and Hamiltonian Formalism Question 10 Detailed Solution

Calculation:

We are given a particle of mass m" id="MathJax-Element-174-Frame" role="presentation" style="position: relative;" tabindex="0">m sliding under the influence of gravity without friction along a parabolic path described by y=ax2" id="MathJax-Element-175-Frame" role="presentation" style="position: relative;" tabindex="0">y=ax2 , where a" id="MathJax-Element-176-Frame" role="presentation" style="position: relative;" tabindex="0">a is a constant.

To determine the Lagrangian L" id="MathJax-Element-177-Frame" role="presentation" style="position: relative;" tabindex="0">L for the particle, we need to consider the kinetic and potential energies of the system.

The kinetic energy T" id="MathJax-Element-178-Frame" role="presentation" style="position: relative;" tabindex="0">T of the particle can be expressed as:

 

T=12m(x˙2+y˙2)" id="MathJax-Element-179-Frame" role="presentation" style="text-align: center; position: relative;" tabindex="0">T=12m(x˙2+y˙2)

Since y=ax2" id="MathJax-Element-180-Frame" role="presentation" style="position: relative;" tabindex="0">y=ax2 , differentiating with respect to time t" id="MathJax-Element-181-Frame" role="presentation" style="position: relative;" tabindex="0">t gives:

 

y˙=dydt=ddt(ax2)=2axx˙" id="MathJax-Element-182-Frame" role="presentation" style="text-align: center; position: relative;" tabindex="0">y˙=dydt=ddt(ax2)=2axx˙

Substituting y˙" id="MathJax-Element-183-Frame" role="presentation" style="position: relative;" tabindex="0">y˙ into the expression for kinetic energy, we get:

 

T=12m(x˙2+(2axx˙)2)=12m(x˙2+4a2x2x˙2)=12m(1+4a2x2)x˙2" id="MathJax-Element-184-Frame" role="presentation" style="text-align: center; position: relative;" tabindex="0">T=12m(x˙2+(2axx˙)2)=12m(x˙2+4a2x2x˙2)=12m(1+4a2x2)x˙2

The potential energy V" id="MathJax-Element-185-Frame" role="presentation" style="position: relative;" tabindex="0">V of the particle due to gravity is given by:

 

V=mgy=mg(ax2)=mgax2" id="MathJax-Element-186-Frame" role="presentation" style="text-align: center; position: relative;" tabindex="0">V=mgy=mg(ax2)=mgax2

The Lagrangian L" id="MathJax-Element-187-Frame" role="presentation" style="position: relative;" tabindex="0">L is the difference between the kinetic and potential energies:

 

L=TV=12m(1+4a2x2)x˙2mgax2" id="MathJax-Element-188-Frame" role="presentation" style="text-align: center; position: relative;" tabindex="0">L=TV=12m(1+4a2x2)x˙2mgax2

Final Answer: The correct Lagrangian for the particle is given by option 2:

 

L=12 m(1+4a2x2)x˙2mg ax2" id="MathJax-Element-189-Frame" role="presentation" style="text-align: center; position: relative;" tabindex="0">L=12 m(1+4a2x2)x˙2mg ax2

Lagrangian and Hamiltonian Formalism Question 11:

The Lagrangian of a particle in one dimension is L = \(\frac{m}{2}\dot{x}^2-ax^2-V_0e^{-10x}\) where a and V0 are positive constants. The best qualitative representation of a trajectory in the phase space is

  1. qImage644a72b935759d4714bfa840
  2. qImage644a72b935759d4714bfa845
  3. qImage644a72ba35759d4714bfa84c
  4. qImage644a72ba35759d4714bfa866

Answer (Detailed Solution Below)

Option 2 : qImage644a72b935759d4714bfa845

Lagrangian and Hamiltonian Formalism Question 11 Detailed Solution

Explanation:

Corresponding Hamiltonian is given as :

\(H=\frac{P^2}{2m}+ax^2+V_0e^{−10x}\)

Now, clearly, this is not an elliptical relation between p and x. So, we can eliminate options 3 and 4.

  • Potential energy \(V(x)=ax^2+V_0e^{−10x}\) has its minimum at x>0.
  • When we decrease energy, the phase space closed curve shrinks at a potential minimum or we can say stable equilibrium.
  • First graph is to shrink at \(x_0<0\).
  • The second graph is to shrink at \(x_0>0\). Hence, is the answer.

Lagrangian and Hamiltonian Formalism Question 12:

The Lagrangian of a system of two particles is L = \(\frac{1}{2}\dot{x}^2_1+2\dot{x}^2_2-\frac{1}{2}(x^2_1+x^2_2+x_1x_2)\). The normal frequencies are best approximated by

  1. 1.2 and 0.7
  2. 1.5 and 0.5
  3. 1.7 and 0.5
  4. 1.0 and 0.4

Answer (Detailed Solution Below)

Option 4 : 1.0 and 0.4

Lagrangian and Hamiltonian Formalism Question 12 Detailed Solution

Explanation:

The equations of motion for the system in terms of the normal coordinates are obtained by applying Euler-Lagrange equations for i = 1, and i = 2.

Euler-Lagrange equations are: \(\frac d{dt} (\frac{∂L}{∂ẋᵢ}) - \frac{∂L}{∂xᵢ} = 0\) for i = 1, 2. So the equations of motion are \( \ddot x₁ - x₁ - 0.5x₂ = 0\) ...(1) & \(4\ddot x₂ - 0.5x₁ - x₂ = 0\) ....(2) 

Solve the characteristic equation for eigenvalues (which correspond to the squares of the normal mode frequencies), which is in the form of \( |m - λI| = 0\), where m is the 2x2 matrix of coefficients of terms linear in x, I is the 2x2 identity matrix and λ are the eigenvalues.

This equation gives us a quadratic equation for the eigenvalues: \((1 - λ)(4 - λ) - (0.5)(0.5) = λ² - 5λ + 4 - 0.25 = λ² - 5λ + 3.75 = 0\)

Solving this quadratic equation for λ gives: \(λ = \frac {[5 ± \sqrt{(5)² - 15}]}{(2\times1)} = \frac {[5 ± \sqrt{(25 - 15)]}} { 2} = \frac{[5 ± \sqrt{10}]}{ 2} = \frac {[5 ± √10]} { 2 }\)

The corresponding frequencies are the square roots of these eigenvalues: \(ω = \sqrt{(λ)} = \sqrt{\frac{5 ± √10}{ 2}}\)

So we have two frequencies, ω₁ and ω₂: \( ω₁ = \sqrt{5 - √10}\times{ 2} = 0.4\) (approximately, when rounding) \(ω₂ = \sqrt{\frac {[5 + √10]}{ 2} }= 1\)

Get Free Access Now
Hot Links: teen patti vungo teen patti game paisa wala teen patti bliss teen patti joy vip