Lagrange and Charpit Methods MCQ Quiz - Objective Question with Answer for Lagrange and Charpit Methods - Download Free PDF

Last updated on Mar 19, 2025

Latest Lagrange and Charpit Methods MCQ Objective Questions

Lagrange and Charpit Methods Question 1:

Which of the following is/are the general solution of the PDE 

z(px - qy) = y2 - x2

  1. x2 + y2 + z2 = f(xy)
  2. x2 + y2 + z2 = f(x-y)
  3. x2 + y2 + z2 = f((x+y)2+z2)
  4. (x+y)2+z2=f(xy)

Answer (Detailed Solution Below)

Option :

Lagrange and Charpit Methods Question 1 Detailed Solution

Concept:

The Lagrange's auxiliary equation of the PDE of the for Pp + qq = R is

dxP=dyQ=dzR

Explanation:

Given PDE is

z(px - qy) = y2 - x2

⇒ xzp - yzq = y2 - x2

Then dxP=dyQ=dzR
⇒ dxxz=dyyz=dzy2x2
 
Now,
 
xdx+ydy+zdzx2zy2z+y2zx2z
i.e., xdx+ydy+zdz0
 
i.e., xdx + ydy + zdz = 0

 

Integrating we get
 
x2 + y2 + z2 = c1...(i)
 
Taking 1st two ratio
 
dxxz=dyyz
 
dxx+dyy=0
 

 Integrating we get

xy = c2...(ii)

 

Taking (i) and (ii) we get the solution
 
x2 + y2 + z2 = f(xy)
 
(1) is true.

 

Also, d(x+y)z(xy)=dzy2x2

⇒ d(x+y)z=dz(x+y)

⇒ (x + y) d(x + y) + zdz = 0 

Integrating both sides we get

(x+y)2+z2=c2....(iii)

Taking (i) and (iii) we get teh solution

x2 + y2 + z2 = f((x+y)2+z2)

(3) is true.

Taking (ii) and (ii) we get the solution

(x+y)2+z2=f(xy)

(4) is true.

Lagrange and Charpit Methods Question 2:

Consider the partial differential equation (PDE)

(p2 + q2)y = qz

Which of the following statements are true?

  1. The general solution of the PDE is z2 = a2y2 + (ax+b), where a and b are arbitrary constants.
  2. The Charpit's equations are

    dx2py=dy2qyz=dz2p2y+2q2yqz=dppq=dqp2

  3. Both 1 and 2 are correct
  4. Neither 1 nor 2 are correct

Answer (Detailed Solution Below)

Option 3 : Both 1 and 2 are correct

Lagrange and Charpit Methods Question 2 Detailed Solution

Concept:

The non-linear PDE of the form

f(x, y, z, p, q) = 0 satisfy Charpit equation

dxfp=dyfq=dzpfp+qfq=dp(fx+pfz)=dq(fy+qfz)

Explanation:

Here f(x, y, z, p, q) = (p2 + q2)y - qz 

Using Charpit formula

dx2py=dy2qyz=dz2p2y+2q2yqz=dp0+pq=dqp2q2+q2

⇒ dx2py=dy2qyz=dz2p2y+2q2yqz=dppq=dqp2

Taking

dppq=dqp2

⇒ pdp + qdq = 0

Integrating

p2 + q2 = a2....(i)

Putting in the given equation

a2y = qz

⇒ q = a2yz

Putting in (i)

p a2q2 = azz2a2y2

Putting p and q in

dz = pdx + qdy

⇒ dz = azz2a2y2dx + a2yzdy

⇒ zdza2ydyz2a2y2 = a dx

Integrating

z2a2y2 = ax + b

Squaring both sides

z2 = a2y2 + (ax+b)2

Both (1) and (2) are correct.

Hence option (3) is true.

Lagrange and Charpit Methods Question 3:

Which of the following is a solution to yux + xuy = 0 passing through the curve x = t, y = 0, u = t?

  1. u = x2y2
  2. u = x + y
  3. u = (x2+y2)1/3
  4. u = x + y2

Answer (Detailed Solution Below)

Option 1 : u = x2y2

Lagrange and Charpit Methods Question 3 Detailed Solution

Concept:

Let Pp + Qq = R be a PDE where P, Q, R are functions of x, y, z then by Lagrange's method

dxP = dyQ = duR

Explanation:

yux + xuy = 0

Using Lagrange's auxiliary equation

dxy = dyx = du0

Taking last two ratio

u = 0

⇒ u = c1

and taking first two ratio

dxy = dyx

x dx = y dy

Integrating 

x2 - y2 = c2

Hence general solution is 

u = ϕ(x2 - y2)

It is passing through the curve x = t, y = 0, u = t

So, 

t =  ϕ(t2)

⇒  ϕ(t) = √t

⇒  ϕ(x2 - y2) = x2y2

Hence

u = x2y2 is the solution

(1) is true

Lagrange and Charpit Methods Question 4:

The general solution of exux + uy = u is

  1. ue-y = ϕ(y + e-x)
  2. u = eyϕ(y + e-x)
  3. y = - e-x + ϕ(ue-y)

  4. All of the above

Answer (Detailed Solution Below)

Option 4 : All of the above

Lagrange and Charpit Methods Question 4 Detailed Solution

Concept:

Let Pp + Qq = R be a PDE where P, Q, R are functions of x, y, z then by Lagrange's method

dxP = dyQ = duR

Explanation:

Given 

exux + uy = u

Using Lagrange's method

dxP = dyQ = duR

⇒ dxex = dy1 = duu

Taking first two ratio

e-x dx = dy

Integrating

⇒ y + e-x = c1...(i)

Taking last two ratio

dy1 = duu  

Integrating we get

⇒ log u - y = log c2

⇒ ue-y = c2...(ii)

 From (i) and (ii) we get the general solution as

ue-y = ϕ(y + e-x)

or, u = eyϕ(y + e-x)

or, y + e-x = ϕ(ue-yi.e., y = - e-x + ϕ(ue-y)

Option (4) is correct

Lagrange and Charpit Methods Question 5:

Let u(x, y) be the solution of the Cauchy problem

ux - uuy = 0, x, y ∈ ℝ,

u(0, y) = 2y, y ∈ ℝ.

Which of the following is the value of u(1, 2)?

  1. -2
  2. - 4
  3. 1/2
  4. 6

Answer (Detailed Solution Below)

Option 2 : - 4

Lagrange and Charpit Methods Question 5 Detailed Solution

Concept:

Let Pp + Qq = R be a PDE where P, Q, R are functions of x, y, z then by Lagrange's method

dxP = dyQ = duR

Explanation:

Given 

ux - uuy = 0, x, y ∈ ℝ,

u(0, y) = 2y, y ∈ ℝ.

Using Lagrange's method

dxP = dyQ = duR

⇒ dx1 = dyu = du0

Taking last two ratio

u = 0

⇒ u = c1...(i)

and putting u = cwe get from first two terms

dx1 = dyc1  

⇒ dy + c1dx = 0

Integrating we get

⇒ y + c1x = c2

⇒ y + ux = c2...(ii)

 From (i) and (ii) we get the general solution as

u = ϕ(y + ux)

Using u(0, y) = 2y we get

2y = ϕ(y)  ϕ(y + ux) = 2(y + ux)

Hence solution is

u = 2(y + ux) 

⇒  u(1 - 2x) = 2y ⇒ u = 2y12x

Therefore u(1, 2) = 412 = - 4

Option (2) is correct

Top Lagrange and Charpit Methods MCQ Objective Questions

The general solution of the surfaces which are perpendicular to the family of surfaces

z2 = kxy, k ∈ R 

is

  1. ϕ(x2 - y2, xz) = 0, ϕ ∈ C1 (R2)
  2. ϕ(x2 - y2, x2 + z2) = 0, ϕ ∈ C1 (R2)
  3. ϕ(x2 - y2, 2x2 + z2) = 0, ϕ ∈ C1 (R2)
  4. ϕ(x2 + y2, 3x2 - z2) = 0, ϕ ∈ C1 (R2)

Answer (Detailed Solution Below)

Option 3 : ϕ(x2 - y2, 2x2 + z2) = 0, ϕ ∈ C1 (R2)

Lagrange and Charpit Methods Question 6 Detailed Solution

Download Solution PDF

Explanation:

Given z2 = kxy, k ∈ ℝ ← system surface

⇒ k=z2xy=f(x,y,z)      ........(i)

Now, we will solve it using lagrange A.E - 

(Recall: Pp + Qq = R)

fx=z2y(1x2)=z2x2y

fy=z2x(1y2)=z2xy2

fz=2zxy

So, fxp+fyq=fz (p = zx, q = zy)

⇒ (z2x2y)p+(z2xy2)q=fz=2zxy

⇒ zxy[zxp+zyq]=zxy[2]

⇒ zxp+zyq=2

⇒ (zy)p + (xz)q = -2xy (on taking LCM)     (ii)

(zy)p → P

(xz)q → Q

-2xy → R

So, by lagrange, A.E -

dxP=dyQ=dzR   

dzzy=dyzx=dz(2xy)

Now,

dxzy=dyzx

⇒ x dx = y dy

on integrating

x22=y22+c

⇒ x2 - y2 = c1

dxzy=dz2xy

⇒ 2x dx = -z dz

on integrating

x2=z622+c

⇒ 2x2 + z2 = c2

So, general soln will be ϕ (c1, c2) = 0

⇒ ϕ (x2 - y2, 2x2 + z2) = 0 ⇒ option (3) correct.

other possible form of solution and when c1 & c2 calculated.

ϕ(c1, c2), c1 = ϕ(c2), c2 = ϕ(c2), c12=ϕ(c2)...

Let u(x, y) be the solution of the Cauchy problem

uux + uy = 0, x ∈ ℝ, y > 0,

u(x, 0) = x, x ∈ ℝ.

Which of the following is the value of u(2, 3)?

  1. 2
  2. 3
  3. 1/2
  4. 1/3

Answer (Detailed Solution Below)

Option 3 : 1/2

Lagrange and Charpit Methods Question 7 Detailed Solution

Download Solution PDF

Concept:

Let Pp + Qq = R be a PDE where P, Q, R are functions of x, y, z then by Lagrange's method

dxP = dyQ = duR

Explanation:

Given 

uux + uy = 0, x ∈ ℝ, y > 0,

u(x, 0) = x, x ∈ ℝ.

Using Lagrange's method

dxP = dyQ = duR

⇒ dxu = dy1 = du0

Solving this we get 

u = c1...(i)

and putting u = cwe get from first two terms

dxc1 = dy1  

dx = c1dy
⇒ x - c1y = c2

⇒ x - uy = c2...(ii)

 From (i) and (ii) we get the general solution as

u = ϕ(x - uy)

Using u(x, 0) = x we get

x = ϕ(x)  so ϕ(x - uy) = x - uy

Hence solution is

u = x - uy ⇒  u(1 + y) = x ⇒ u = x1+y

Therefore u(2, 3) = 24=12

Option (3) is correct

Consider the Cauchy problem

xux+yuy=u;

𝑢 = 𝑓(𝑡) on the initial curve Γ = (𝑡, 𝑡); 𝑡 > 0.

Consider the following statements:

𝑃: If 𝑓(𝑡) = 2𝑡 + 1, then there exists a unique solution to the Cauchy problem in a neighbourhood of Γ.

𝑄: If 𝑓(𝑡) = 2𝑡 − 1, then there exist infinitely many solutions to the Cauchy problem in a neighbourhood of Γ.

Then

  1. both 𝑃 and 𝑄 are TRUE
  2. 𝑃 is FALSE and 𝑄 is TRUE
  3. 𝑃 is TRUE and 𝑄 is FALSE
  4. both 𝑃 and 𝑄 are FALSE

Answer (Detailed Solution Below)

Option 4 : both 𝑃 and 𝑄 are FALSE

Lagrange and Charpit Methods Question 8 Detailed Solution

Download Solution PDF

Given -

Consider the Cauchy problem

xux+yuy=u;

𝑢 = 𝑓(𝑡) on the initial curve Γ = (𝑡, 𝑡); 𝑡 > 0.

Concept -

If the PDE is the form of pP + qQ = R then 

(i) p(t)x=q(t)y=Ru(t) ⇒ Infinite solutions 

(ii) p(t)xq(t)yRu(t) ⇒ Unique solution

(iii) p(t)x=q(t)yRu(t) ⇒ No solution

where p = x, q = y and R = u  

Explanation -

we have the PDE is xux+yuy=u; and 𝑢 = 𝑓(𝑡) on the initial curve Γ = (𝑡, 𝑡); 𝑡 > 0.

So x = t, y = t and u = f(t) 

Now for Statement (P) -

t1=t12t+12

Hence there is no solution. So Statement P is false.

Now for Statement (Q) -

t1=t12t12

Hence there is no solution. So Statement Q is false.

Hence option (4) is true.

Let B(0,1) = {(x,y) ∈ ℝ2|x2 + y2 < 1} be the open unit disc in ℝ2, ∂B(0, 1) denote the boundary of B(0,1), and v denote unit outward normal to ∂B(0, 1). Let f : ℝ2 → ℝ be a given continuous function. The Euler-Lagrange equation of the minimization problem  

min{12B(0,1)|u|2dxdy+12B(0,1)eu2dxdy+tB(0,1)fuds}

subject to u ∈ C1 B(0,1) is

  1. {Δu=ueu2in B(0,1) uν=fon B(0,1
  2. {Δu=ueu2+fin B(0,1) u=0on B(0,1
  3. {Δu=ueu2in B(0,1) uν=fon B(0,1
  4. {Δu=ueu2in B(0,1) uν+u=fon B(0,1

Answer (Detailed Solution Below)

Option 3 : {Δu=ueu2in B(0,1) uν=fon B(0,1

Lagrange and Charpit Methods Question 9 Detailed Solution

Download Solution PDF
The Correct answer is (3).

We will update the solution later.

The general solution of the equation

xzx+yzy=0 is

  1. z=ϕ(|x||y|),ϕC1(R)
  2. z=ϕ(x1y),ϕC1(R)
  3. z=ϕ(x+1y),ϕC1(R)
  4. z = ϕ(|x| + |y|), ϕ ∈ C1(R)

Answer (Detailed Solution Below)

Option 1 : z=ϕ(|x||y|),ϕC1(R)

Lagrange and Charpit Methods Question 10 Detailed Solution

Download Solution PDF

Explanation:

Given: xzx+yzy=0 i.e. xp + yq = 0

on comping with Pp + Qq = R, we have-

P = x, Q = y & R = 0

so, By Lagrange auxillary equation

 dxp=dyQ=dzR

dxx=dyy=dz0

Now dz = 0

⇒ z = c1

using first and 2nd term

 dxx=dyy

Integrating, 

log |z| = log |y| + log c2

log(|x||y|)=logc2

c2=|x||y|

Hence, general sol is -

c1 ϕ(c2) or c2 = ϕ(c1) or ϕ(c1 c2) = o

⇒ z = ϕ (|x||y|) 

option (1) correct

Lagrange and Charpit Methods Question 11:

The general solution of the surfaces which are perpendicular to the family of surfaces

z2 = kxy, k ∈ R 

is

  1. ϕ(x2 - y2, xz) = 0, ϕ ∈ C1 (R2)
  2. ϕ(x2 - y2, x2 + z2) = 0, ϕ ∈ C1 (R2)
  3. ϕ(x2 - y2, 2x2 + z2) = 0, ϕ ∈ C1 (R2)
  4. ϕ(x2 + y2, 3x2 - z2) = 0, ϕ ∈ C1 (R2)

Answer (Detailed Solution Below)

Option 3 : ϕ(x2 - y2, 2x2 + z2) = 0, ϕ ∈ C1 (R2)

Lagrange and Charpit Methods Question 11 Detailed Solution

Explanation:

Given z2 = kxy, k ∈ ℝ ← system surface

⇒ k=z2xy=f(x,y,z)      ........(i)

Now, we will solve it using lagrange A.E - 

(Recall: Pp + Qq = R)

fx=z2y(1x2)=z2x2y

fy=z2x(1y2)=z2xy2

fz=2zxy

So, fxp+fyq=fz (p = zx, q = zy)

⇒ (z2x2y)p+(z2xy2)q=fz=2zxy

⇒ zxy[zxp+zyq]=zxy[2]

⇒ zxp+zyq=2

⇒ (zy)p + (xz)q = -2xy (on taking LCM)     (ii)

(zy)p → P

(xz)q → Q

-2xy → R

So, by lagrange, A.E -

dxP=dyQ=dzR   

dzzy=dyzx=dz(2xy)

Now,

dxzy=dyzx

⇒ x dx = y dy

on integrating

x22=y22+c

⇒ x2 - y2 = c1

dxzy=dz2xy

⇒ 2x dx = -z dz

on integrating

x2=z622+c

⇒ 2x2 + z2 = c2

So, general soln will be ϕ (c1, c2) = 0

⇒ ϕ (x2 - y2, 2x2 + z2) = 0 ⇒ option (3) correct.

other possible form of solution and when c1 & c2 calculated.

ϕ(c1, c2), c1 = ϕ(c2), c2 = ϕ(c2), c12=ϕ(c2)...

Lagrange and Charpit Methods Question 12:

Let u(x, y) be the solution of the Cauchy problem

uux + uy = 0, x ∈ ℝ, y > 0,

u(x, 0) = x, x ∈ ℝ.

Which of the following is the value of u(2, 3)?

  1. 2
  2. 3
  3. 1/2
  4. 1/3

Answer (Detailed Solution Below)

Option 3 : 1/2

Lagrange and Charpit Methods Question 12 Detailed Solution

Concept:

Let Pp + Qq = R be a PDE where P, Q, R are functions of x, y, z then by Lagrange's method

dxP = dyQ = duR

Explanation:

Given 

uux + uy = 0, x ∈ ℝ, y > 0,

u(x, 0) = x, x ∈ ℝ.

Using Lagrange's method

dxP = dyQ = duR

⇒ dxu = dy1 = du0

Solving this we get 

u = c1...(i)

and putting u = cwe get from first two terms

dxc1 = dy1  

dx = c1dy
⇒ x - c1y = c2

⇒ x - uy = c2...(ii)

 From (i) and (ii) we get the general solution as

u = ϕ(x - uy)

Using u(x, 0) = x we get

x = ϕ(x)  so ϕ(x - uy) = x - uy

Hence solution is

u = x - uy ⇒  u(1 + y) = x ⇒ u = x1+y

Therefore u(2, 3) = 24=12

Option (3) is correct

Lagrange and Charpit Methods Question 13:

Which of the following is a solution to ux + x2uy = 0 with u(x, 0) = ex?

  1. ex
  2. e(x3+y)1/3
  3. e(x33y)1/3
  4. (x2y + 1)ex

Answer (Detailed Solution Below)

Option 3 : e(x33y)1/3

Lagrange and Charpit Methods Question 13 Detailed Solution

Explanation:

ux + x2uy = 0 with u(x, 0) = ex

Using Lagrange's auxiliary equation

dx1 = dyx2 = du0

Solving u = c1

and taking first two

dy = x2dx

Integrating 

y = x3/3 - c2

c2 = (x-3y)

hence solution is 

u = ϕ(x-3y)

using u(x, 0) = ex

e ϕ(x3) so  ϕ(t) = et1/3 

hence u = e(x33y)1/3

(3) is true

Lagrange and Charpit Methods Question 14:

The solution of the initial value problem (x y)ux+(yxu)uy=u, u(x, 0) = 1, satisfies

  1. u2 (x – y + u) + (y – x – u) = 0.
  2. u2 (x + y + u) + (y – x – u) = 0
  3. u2 (x – y + u) – (x + y + u) = 0. 
  4. u2 (y – x + u) + (x + y – u) = 0

Answer (Detailed Solution Below)

Option 2 : u2 (x + y + u) + (y – x – u) = 0

Lagrange and Charpit Methods Question 14 Detailed Solution

Concept:

A particular Quasi-linear partial differential equation of order one is of the form Pp + Qq = R, where P, Q and R are functions of x, y, z. Such a partial differential equation is known as Lagrange equation and it's Lagrange’s auxiliary equations is

dxP=dyQ=dzR

Explanation:

Given (x - y)ux+(yxu)uy=u

Then  Lagrange’s auxiliary equations is

dxxy=dyyxu=duu 

Using

dxxy=dyyxu=duu = dx+dy+duxy+yxu+u = dx+dy+du0

⇒ dx + dy + du = 0

 

⇒ x + y + u = c1 (integrating)

Also

dxdy+duxyy+x+u+u=duu

⇒ d(xy+u)2(xy+u)=duu

⇒ ln|x - y + u|  - 2 ln|u| = lnc2 (Integrating)

⇒ xy+uu2 = c2 

Hence general solution is

xy+uu2 = ϕ(x + y + u)....(i)

Using u(x, 0) = 1 in (i)

x + 1 = ϕ (x + 1)

⇒ ϕ(x) = x

So ϕ(x + y + u) = x + y + u

The solution is

xy+uu2 = x + y + u 

x - y + u = u2(x + y + u )

u2 (x + y + u) - (x – y + u) = 0

u2 (x + y + u) + (y – x – u) = 0

(2) is correct

Lagrange and Charpit Methods Question 15:

Let u = u(x, y) be the solution to the following Cauchy problem

ux + uy = eu for (x, y) ∈ ℝ × (0,1e) and u(x, 0) = 1 for x ∈ ℝ.

Which of the following statements are true?

  1. u(12e,12e)=1
  2. ux(12e,12e)=0
  3. ux(14e,14e)=log4
  4. uy(0,14e)=4e3

Answer (Detailed Solution Below)

Option :

Lagrange and Charpit Methods Question 15 Detailed Solution

Concept:

Let Pp + Qq = R be a PDE where P, Q, R are functions of x, y, z then by Lagrange's method

dxP = dyQ = duR

Explanation:

Given 

ux + uy = eu, u(x, 0) = 1 

Using Lagrange's method

dxP = dy1 = duR

⇒ dx1 = dy1 = dueu

Solving 1st two terms

dx1 = dy1

dy = dx

y - x = c1...(i)

Using 1st and 3rd term

dx1 = dueu

dx = e-udu  

Integrating

x + e-u =  c2...(ii)

From (i) and (ii) we get the general solution as

x + e-u = ϕ(y - x)

Using u(x, 0) = 1 we get

x + e-1= ϕ(- x)  so ϕ(x) = - x + e-1 so ϕ(y - x) = -y + x + e-1

Hence solution is

x + e-u = -y + x + e-1 ⇒ e-u = -y + e-1 ⇒ u = - ln(-y + e-1)

Hence ux = 0, uy = 1y+e1

Therefore, u(12e,12e) = - ln(12e+1e) = -ln(12e) = ln(2e)

Option (1) is false

ux(12e,12e) = 0

Option (2) is correct
uy(14e,14e) = 114e+1e = 4e3

Option (3) is false

 uy(0,14e) = 114e+1e = 4e3

Option (4) is correct

Get Free Access Now
Hot Links: teen patti stars teen patti - 3patti cards game teen patti jodi teen patti star login