Effect of Feedback on Noise MCQ Quiz - Objective Question with Answer for Effect of Feedback on Noise - Download Free PDF

Last updated on Apr 13, 2025

Latest Effect of Feedback on Noise MCQ Objective Questions

Top Effect of Feedback on Noise MCQ Objective Questions

Effect of Feedback on Noise Question 1:

For an LTI system in figure \(\rm x(s)\) is input and \(\rm y(s)\) is output. In order to nullify the effect of noise \(\rm N(s)\), the gain of the feed forward path \(\rm {G_e}\left( s \right)\) is

EC Control test 1 Reviewers Suggestions Images Q1

  1. \(\rm \frac{{s\left( {s + a} \right)\left( {s + b} \right)}}{{c\left( {s + b} \right)}}\)

  2. \(\rm \frac{{c\left( {s + b} \right)}}{{s\left( {s + a} \right)\left( {s + d} \right)}}\)

  3. \(\rm \frac{{s\left( {s + d} \right)\left( {s + b} \right)}}{{c\left( {s + a} \right)}}\)

  4. \(\rm \frac{{c\left( {s + a} \right)}}{{s\left( {s + b} \right)\left( {s + d} \right)}}\)

Answer (Detailed Solution Below)

Option 3 :

\(\rm \frac{{s\left( {s + d} \right)\left( {s + b} \right)}}{{c\left( {s + a} \right)}}\)

Effect of Feedback on Noise Question 1 Detailed Solution

\(\rm \begin{array}{l} {\left. {\frac{{y\left( s \right)}}{{N\left( s \right)}}} \right|_{x\left( s \right) = 0}} = \frac{{1 - {G_e}\left( s \right).\frac{{\left( {s + a} \right)c}}{{s\left( {s + b} \right)\left( {s + d} \right)}}}}{{1 + \frac{{\left( {s + a} \right)c}}{{s\left( {s + b} \right)\left( {s + d} \right)}}}}\\ \rm {\left. {\frac{{y\left( s \right)}}{{x\left( s \right)}}} \right|_{N\left( s \right) = 0}} = \frac{{\frac{{c\left( {s + a} \right)}}{{s\left( {s + b} \right)\left( {s + d} \right)}}}}{{1 + \frac{{\left( {s + a} \right)c}}{{s\left( {s + b} \right)\left( {s + d} \right)}}}}\\ \rm \therefore y\left( s \right) = \frac{{x\left( s \right).\left( {s + a} \right)c}}{{s\left( {s + b} \right)\left( {s + d} \right) + \left( {s + a} \right)c}} + \frac{{1 - {G_e}\left( s \right)\frac{{\left( {s + a} \right)c}}{{s\left( {s + b} \right)\left( {s + d} \right)}}.N\left( S \right)}}{{1 + \frac{{\left( {s + a} \right)c}}{{s\left( {s + b} \right)\left( {s + d} \right)}}}} \end{array}\)

\(\rm N(s)\) term can be zero if \(\rm 1 - {G_e}\left( s \right)\frac{{\left( {s + a} \right)c}}{{s\left( {s + b} \right)\left( {s + d} \right)}} = 0\)

\(\rm {G_e}\left( s \right) = \frac{{s\left( {s + b} \right)\left( {s + d} \right)}}{{c\left( {s + a} \right)}}\)

Get Free Access Now
Hot Links: teen patti master golden india teen patti 50 bonus teen patti master downloadable content