Let x = (x1, …, xn) and y = (y1, …, yn) denote vectors in ℝn for a fixed n ≥ 2. Which of the following defines an inner product on ℝn?

This question was previously asked in
CSIR UGC (NET) Mathematical Science: Held On (7 June 2023)
View all CSIR NET Papers >
  1. 〈x, y〉 = \(\rm\displaystyle\sum_{i, j=1}^n\) xiyj
  2. 〈x, y〉 = \(\rm\displaystyle\sum_{i, j=1}^n\left(x_i^2+y_j^2\right)\)
  3. 〈x, y〉 = \(\rm\displaystyle\sum_{j=1}^n\) jxjyj
  4. 〈x, y〉 = \(\rm\displaystyle\sum_{j=1}^n\) xyn−j+1

Answer (Detailed Solution Below)

Option 3 : 〈x, y〉 = \(\rm\displaystyle\sum_{j=1}^n\) jxjyj
Free
Seating Arrangement
3.3 K Users
10 Questions 20 Marks 15 Mins

Detailed Solution

Download Solution PDF

Concept:

(a) Let V be a vector space. A function β : V × V → , usually denoted β(x, y) = <x, y>, is called an inner product on V if it is positive, symmetric, and bilinear. That is, if

(i) <x, y> ≥ 0, <x, x> = 0 only for x = x

(ii) <x, y> = <y, x>
(iii) <rx, y> = r<x, y> 
(iv) <x + y, z> = <x, z> + <y, z>
(b) If Q = ax1y1 + bx1y2 + cx2y1 + dx2y2 be a quadratic form then the necessary condition of being it inner product space is a > 0, d > 0 and ad - bc > 0
i.e., if these condition does not satisfy then it will not be an inner product space.

Explanation:

x = (x1, …, xn) and y = (y1, …, yn) ∈ ℝn 

For n = 2

(1) 〈x, y〉 = \(\rm\displaystyle\sum_{i, j=1}^2\) xiyjx1y1 + x1y2 + x2y1 + x2y2 

So, A = \(\begin{bmatrix}1&1\\1&1\end{bmatrix}\) 

Here a > 0, d > 0 but ad - bc = 1 - 1 = 0

So it does not define inner product space.

Option (1) is false

(4) 〈x, y〉 =\(\rm\displaystyle\sum_{j=1}^n\) xj yn−j+1= x1y2 + x2y1  

So, A = \(\begin{bmatrix}0&1\\1&0\end{bmatrix}\) 

Here a = 0, d = 0 but ad - bc = 0 - 1 = -1 < 0

So it does not define inner product space.

Option (4) is false

(2) 

〈x, y〉 = \(\rm\displaystyle\sum_{i, j=1}^n\left(x_i^2+y_j^2\right)\)

\((x_1^2 + y_1^2)+(x_1^2+y_2^2) + (x_2^2+y_1^2) + (x_2^2+y_2^2) \)

\(2x_1^2 + 2y_1^2+2x_2^2+2y_2^2\)

Consider  x = (1,1)   and y = (1,1)

then <2x,y> = 2(2)2 + 2 (2)2 + 2 (1)2 + 2(1)2 = 20

But 2 <x,y> = 2( 2 (1)2 + 2(1)2 +  2 (1)2 + 2(1)2 ) = 16

Thus <2x,y> ≠ 2 <x,y> and so <x,y> is not an inner product. 

Option (2) is false

Hence option (3) is true.

Latest CSIR NET Updates

Last updated on Jun 5, 2025

-> The NTA has released the CSIR NET 2025 Notification for the June session.

-> The CSIR NET Application Form 2025 can be submitted online by 23rd June 2025

-> The CSIR UGC NET is conducted in five subjects -Chemical Sciences, Earth Sciences, Life Sciences, Mathematical Sciences, and Physical Sciences. 

-> Postgraduates in the relevant streams can apply for this exam.

-> Candidates must download and practice questions from the CSIR NET Previous year papers. Attempting the CSIR NET mock tests are also very helpful in preparation.

More Linear Algebra Questions

Get Free Access Now
Hot Links: teen patti cash teen patti master update teen patti master gold teen patti all games teen patti casino download