मानें कि p एक धनात्मक पूर्णांक है। संवृत वक्र r(t) = eit, 0 ≤ t < 2π पर विचार करें। मानें कि f ऐसा फलन है जो {z ∶ |z| < R} में सममितीय (होलामॉर्फिक) है जहां R > 1 है। यदि f के शून्य केवल z0 में हो, z≠ 0, |z0| < R, और उसकी बहुकता (multiplicity) q हो, तब

12πirf(z)f(z)zpdz

का मान निम्न है

This question was previously asked in
CSIR-UGC (NET) Mathematical Science: Held on (26 Nov 2020)
View all CSIR NET Papers >
  1. qz0p
  2. z0qp
  3. pz0q
  4. z0pq

Answer (Detailed Solution Below)

Option 1 : qz0p
Free
Seating Arrangement
3.4 K Users
10 Questions 20 Marks 15 Mins
Latest CSIR NET Updates

Last updated on Jun 23, 2025

-> The last date for CSIR NET Application Form 2025 submission has been extended to 26th June 2025.

-> The CSIR UGC NET is conducted in five subjects -Chemical Sciences, Earth Sciences, Life Sciences, Mathematical Sciences, and Physical Sciences. 

-> Postgraduates in the relevant streams can apply for this exam.

-> Candidates must download and practice questions from the CSIR NET Previous year papers. Attempting the CSIR NET mock tests are also very helpful in preparation.

More Complex Analysis Questions

Get Free Access Now
Hot Links: teen patti master plus teen patti master gold apk teen patti casino download teen patti classic teen patti pro