यदि y = sec(tan⁻¹ x) है, तो x = 1 पर dy/dx ज्ञात कीजिए। 

This question was previously asked in
Army Havildar SAC 2025 Mock Paper
View all Army Havildar SAC Papers >
  1. 1
  2. 1/√2
  3. ½
  4. -1

Answer (Detailed Solution Below)

Option 2 : 1/√2
Free
Army Havildar SAC - Quick Quiz
2 K Users
5 Questions 10 Marks 6 Mins

Detailed Solution

Download Solution PDF

दिया गया है:

y = sec(tan-1 x)

x = 1 पर dy/dx ज्ञात कीजिए

प्रयुक्त अवधारणा:

x के सापेक्ष y को अवकलित करने के लिए, हम श्रृंखला नियम का उपयोग करते हैं।

sec(u) का अवकलज sec(u)tan(u) है, और tan-1(x) का अवकलज 1 / (1 + x2) है।

गणना:

चरण 1: दिए गए समीकरण से प्रारंभ करें: y = sec(tan-1 x)

चरण 2: x के सापेक्ष y को अवकलित करें: dy/dx = d[sec(tan-1 x)] / dx

⇒ dy/dx = sec(tan-1 x)tan(tan-1 x) × d[tan-1(x)] / dx

चरण 3: tan-1(x) के अवकलज को प्रतिस्थापित करें:

⇒ dy/dx = sec(tan-1 x)tan(tan-1 x) × (1 / (1 + x2))

चरण 4: tan(tan-1(x)) को सरल करें:

tan(tan-1 x) = x

⇒ dy/dx = sec(tan-1 x) × x / (1 + x2)

चरण 5: x = 1 पर:

tan-1(1) = π/4 (चूँकि tan(π/4) = 1)

sec(tan-1(1)) = sec(π/4) = √2

⇒ dy/dx = sec(π/4) × 1 / (1 + 12)

⇒ dy/dx = √2 × 1 / 2

⇒ dy/dx = 1/√ 2

निष्कर्ष:

∴ x = 1 पर dy/dx का मान 1/√ 2 है।

Latest Army Havildar SAC Updates

Last updated on Jul 1, 2025

-> The Indian Army has released the Exam Date for Indian Army Havildar SAC (Surveyor Automated Cartographer).

->The Exam will be held on 9th July 2025.

-> Interested candidates had applied online from 13th March to 25th April 2025.

-> Candidates within the age of 25 years having specific education qualifications are eligible to apply for the exam.

-> The candidates must go through the Indian Army Havildar SAC Eligibility Criteria to know about the required qualification in detail. 

More Differential Calculus Questions

Get Free Access Now
Hot Links: teen patti live happy teen patti teen patti game master teen patti