Question
Download Solution PDFयदि y = sec(tan⁻¹ x) है, तो x = 1 पर dy/dx ज्ञात कीजिए।
Answer (Detailed Solution Below)
Detailed Solution
Download Solution PDFदिया गया है:
y = sec(tan-1 x)
x = 1 पर dy/dx ज्ञात कीजिए
प्रयुक्त अवधारणा:
x के सापेक्ष y को अवकलित करने के लिए, हम श्रृंखला नियम का उपयोग करते हैं।
sec(u) का अवकलज sec(u)tan(u) है, और tan-1(x) का अवकलज 1 / (1 + x2) है।
गणना:
चरण 1: दिए गए समीकरण से प्रारंभ करें: y = sec(tan-1 x)
चरण 2: x के सापेक्ष y को अवकलित करें: dy/dx = d[sec(tan-1 x)] / dx
⇒ dy/dx = sec(tan-1 x)tan(tan-1 x) × d[tan-1(x)] / dx
चरण 3: tan-1(x) के अवकलज को प्रतिस्थापित करें:
⇒ dy/dx = sec(tan-1 x)tan(tan-1 x) × (1 / (1 + x2))
चरण 4: tan(tan-1(x)) को सरल करें:
tan(tan-1 x) = x
⇒ dy/dx = sec(tan-1 x) × x / (1 + x2)
चरण 5: x = 1 पर:
tan-1(1) = π/4 (चूँकि tan(π/4) = 1)
sec(tan-1(1)) = sec(π/4) = √2
⇒ dy/dx = sec(π/4) × 1 / (1 + 12)
⇒ dy/dx = √2 × 1 / 2
⇒ dy/dx = 1/√ 2
निष्कर्ष:
∴ x = 1 पर dy/dx का मान 1/√ 2 है।
Last updated on Jul 1, 2025
-> The Indian Army has released the Exam Date for Indian Army Havildar SAC (Surveyor Automated Cartographer).
->The Exam will be held on 9th July 2025.
-> Interested candidates had applied online from 13th March to 25th April 2025.
-> Candidates within the age of 25 years having specific education qualifications are eligible to apply for the exam.
-> The candidates must go through the Indian Army Havildar SAC Eligibility Criteria to know about the required qualification in detail.