Question
Download Solution PDFबहुपद x2 − x − (2 + 2k) का एक शून्यक −4 है, तो k का मान ज्ञात कीजिए।
This question was previously asked in
Bihar STET Paper I: Mathematics (Held In 2019 - Shift 1)
Answer (Detailed Solution Below)
Option 2 : 9
Free Tests
View all Free tests >
Bihar STET Paper 1 Social Science Full Test 1
11.8 K Users
150 Questions
150 Marks
150 Mins
Detailed Solution
Download Solution PDFप्रयुक्त अवधारणा:
यदि a बहुपद P(x) का शून्यक है तो P(a) = 0
गणना:
−4 बहुपद x2 − x − (2 + 2k) = P(x) का एक शून्यक है।
अतः, P(-4) = 0
42 - -4 - (2 + 2k) = 0
16 + 4 - (2 + 2k) = 0
20 = (2 + 2k)
20 - 2 = 2k
18 = 2k, k = 9
अतः, सही उत्तर विकल्प 2 है।
Last updated on Jul 3, 2025
-> The Bihar STET 2025 Notification will be released soon.
-> The written exam will consist of Paper-I and Paper-II of 150 marks each.
-> The candidates should go through the Bihar STET selection process to have an idea of the selection procedure in detail.
-> For revision and practice for the exam, solve Bihar STET Previous Year Papers.