Mathematical Science MCQ Quiz in मल्याळम - Objective Question with Answer for Mathematical Science - സൗജന്യ PDF ഡൗൺലോഡ് ചെയ്യുക

Last updated on Mar 8, 2025

നേടുക Mathematical Science ഉത്തരങ്ങളും വിശദമായ പരിഹാരങ്ങളുമുള്ള മൾട്ടിപ്പിൾ ചോയ്സ് ചോദ്യങ്ങൾ (MCQ ക്വിസ്). ഇവ സൗജന്യമായി ഡൗൺലോഡ് ചെയ്യുക Mathematical Science MCQ ക്വിസ് പിഡിഎഫ്, ബാങ്കിംഗ്, എസ്എസ്‌സി, റെയിൽവേ, യുപിഎസ്‌സി, സ്റ്റേറ്റ് പിഎസ്‌സി തുടങ്ങിയ നിങ്ങളുടെ വരാനിരിക്കുന്ന പരീക്ഷകൾക്കായി തയ്യാറെടുക്കുക

Latest Mathematical Science MCQ Objective Questions

Top Mathematical Science MCQ Objective Questions

Mathematical Science Question 1:

Let  be a sequence of non negative real number. Which of the following statement is not true?

  1. If  then 
  2. If  then 
  3. If  then 
  4. (i) & (iii) both are correct.

Answer (Detailed Solution Below)

Option 2 : If  then 

Mathematical Science Question 1 Detailed Solution

Concept -

P - test - 

 is convergent for p > 1

Explanation -

For option (ii) -

If an = 1/n be a sequence of non - negative real number.

If  is convergent by P - test.

but  is divergent series 

Hence option(ii) is false.

For option(i) -

If   is convergent then  is also convergent for any convergent series.

Hence option(i) is true.

For option(iii) -

If  is convergent then  is either cgt or dgt as well

but in both cases, the series  is convergent.

Hence option(iii) is true.

Mathematical Science Question 2:

Let W be the column space of the matrix

 then the orthogonal projection of the vector  on W is

Answer (Detailed Solution Below)

Option 2 :

Mathematical Science Question 2 Detailed Solution

Explanation:

Let w1 and w2 =  and u = 

then orthogonal projection of u on W is 

}{}\) w1 + }{}\)w2

 = 

 = 

(2) correct

Mathematical Science Question 3:

Let  be a basis of ℝ2 and T: ℝ→ℝ2 be defined by  If T[C] represents the matrix of T with respect to the basis C, then which among the following is true?

Answer (Detailed Solution Below)

Option 3 :

Mathematical Science Question 3 Detailed Solution

Explanation:

T: ℝ→ℝ2 be defined by 

 be a basis of ℝ2 

So,  = 

  = 

So, matrix representation is

Option (3) is true and others are false

Mathematical Science Question 4:

If  exist and finite then the value of a is

  1. 0
  2. 1
  3. 2
  4. any value

Answer (Detailed Solution Below)

Option 1 : 0

Mathematical Science Question 4 Detailed Solution

Concept:

L’Hospital’s Rule: If  =  = 0 or ± ∞ and g'(x) ≠ 0 for all x in I with x ≠ c and  exist then  = 

Explanation:

 (0/0 form so using L'hospital rule)

 

Again using L'hospital rule

It will be 0/0 form if

x - 2a = 0

⇒ a = 0

Option (1) is correct

Mathematical Science Question 5:

Find the limit of sin (y)/x, where (x, y) approaches to (0, 0)?

  1. 1
  2. 0
  3. infinite
  4. doesn't exist

Answer (Detailed Solution Below)

Option 4 : doesn't exist

Mathematical Science Question 5 Detailed Solution

Given:

f(x, y) =  (x, y) → (0, 0)

Concept Used:

Putting y = mx in the function and checking whether the function is free from m then limit will exist if not then limit will not exist.

Solution:

We have,

f(x, y) = \(\frac{siny}{x}\) (x, y) → (0, 0)

Put y = mx

So, 

lim (x, y) → (0, 0) \(\frac{siny}{x}\)

⇒ lim x → 0 
 

We cannot eliminate m from the above function.

Hence limit does not exist.

 Option 4 is correct.

Mathematical Science Question 6:

A function f defined such that for all real x, y 

(i) f(x + y) = f(x).f(y)

(ii) f(x) = 1 + x g(x)

where  what is  equal to ?

  1. g(x)
  2. f(x)
  3. g'(x)
  4. g(x) + xg'(x)

Answer (Detailed Solution Below)

Option 2 : f(x)

Mathematical Science Question 6 Detailed Solution

Explanation:

Here, it is given that

(i) f(x + y) = f(x).f(y) and

(ii) f(x) = 1 + x g(x), where 

Now, writing for y in the given condition. We have

f(x + h) = f(x).f(h)

Then, f(x + h) - f(x) = f(x)f(h) - f(x)

Or 

                      =  (using (ii))

Hence, 

Since, by hypothesis 

It follows that f'(x) = f(x)

Since, f(x) exists, f'(x) also exists

and f'(x) = f(x) 

⇒ 

(2) is true.

Mathematical Science Question 7:

How many real roots does the polynomial x4 - 3x3 - x2 + 4 have in between [1,4] ?

  1. 0
  2. 1
  3. 2
  4. 3

Answer (Detailed Solution Below)

Option 3 : 2

Mathematical Science Question 7 Detailed Solution

Concept -

If f : [a,b] →  and f(a) > 0 and f(b)

Explanation -

We have the polynomial f(x) = x4 - 3x3 - x2 + 4

Now f'(x) = 4x3 - 9x2 - 2x = x( 4x2 - 9x - 2) 

Now for the critical points 

f'(x) = 0

⇒  x( 4x2 - 9x - 2) = 0

⇒ x = 0 or 4x2 - 9x - 2 = 0

Now for 4x2 - 9x - 2 = 0 ⇒ x = 

⇒ we get three critical points of the given polynomial.

Now f(0) = 4 and f(1/2) = 1/16 - 3/8 -1/4 + 4

Now function is decreasing from 0 to 1.

Now f(2) = 16 - 24 - 4 + 4 = -8

Hence we get a one real roots in between 1 & 2.

Now f(3) > 0 and f(4) > f(3) 

Hence we get a one real roots in between 2 & 3.

Therefore we get two real roots in between  [1,4].

Hence option(3) is correct. 

Mathematical Science Question 8:

The value of  is  

  1. 1
  2. π

  3. 2 π 
  4. Does not exist.

Answer (Detailed Solution Below)

Option 3 : 2 π 

Mathematical Science Question 8 Detailed Solution

Explanation -

Let an = n sin(2 π en!) we have 

⇒ 

Where r is positive integer. so we have

Further, observe that 

By squeeze principle, we have 

 and 

So using the result that  we get 

Hence Option(3) is correct.

Mathematical Science Question 9:

Let f ∈ C1[- π, π ], Define for ,  which of the following is correct? 

  1. b→ 0 as n → ∞ 
  2. nbn → 0 as n → ∞ 
  3. The series  is absolutely convergent.
  4. All the above 

Answer (Detailed Solution Below)

Option 4 : All the above 

Mathematical Science Question 9 Detailed Solution

Concept -

Reimann Lebesgue Lemma -

If the Lebesgue Integral of |f| is finite then the fourier transform of |f| vanishes as its argument does to infinity.

Explanation -

We have the sequence  

Note that f(x) being continuous on a compact set is bounded and |sin t | ≤ 1

Therefore     ∀ n  where M is bound on f(x).

Thus the sequence {bn} is bounded.

integration by parts, we get 

bn  

Since f'(t) is continuous then by Reimann Lebesgue Lemma, which is " If the Lebesgue Integral of |f| is finite then the fourier transform of |f| vanishes as its argument does to infinity. "

Thus in particular, bn and n bn → 0 as n → ∞ 

Hence option (1) and (2) is correct.

For option(iii) -

 is also absolutely convergent because bbeing bounded and and cgs to 0.

Hence the option (3) is correct. 

Hence option(4) is the correct option.

Mathematical Science Question 10:

The series  is ______ on the interval [1, ∞ ).

  1. Absolutely convergent
  2. Convergent only
  3. Divergent 
  4. Oscillatory

Answer (Detailed Solution Below)

Option 1 : Absolutely convergent

Mathematical Science Question 10 Detailed Solution

Concept -

(i) ∑ |an | is convergent then ∑ an is absolutely convergent.

(ii) Ratio Test - 

If  then the series  ∑ an is convergent.

Explanation -

We have the series  

Now for Absolutely convergent -

Now using Ratio Test -

Hence the series  is convergent and the given series is absolutely convergent.

Hence Option (i) is true.

Hot Links: teen patti gold apk teen patti - 3patti cards game downloadable content teen patti bonus