Bilinear Forms,Quadratic Forms MCQ Quiz in मल्याळम - Objective Question with Answer for Bilinear Forms,Quadratic Forms - സൗജന്യ PDF ഡൗൺലോഡ് ചെയ്യുക

Last updated on Apr 12, 2025

നേടുക Bilinear Forms,Quadratic Forms ഉത്തരങ്ങളും വിശദമായ പരിഹാരങ്ങളുമുള്ള മൾട്ടിപ്പിൾ ചോയ്സ് ചോദ്യങ്ങൾ (MCQ ക്വിസ്). ഇവ സൗജന്യമായി ഡൗൺലോഡ് ചെയ്യുക Bilinear Forms,Quadratic Forms MCQ ക്വിസ് പിഡിഎഫ്, ബാങ്കിംഗ്, എസ്എസ്‌സി, റെയിൽവേ, യുപിഎസ്‌സി, സ്റ്റേറ്റ് പിഎസ്‌സി തുടങ്ങിയ നിങ്ങളുടെ വരാനിരിക്കുന്ന പരീക്ഷകൾക്കായി തയ്യാറെടുക്കുക

Latest Bilinear Forms,Quadratic Forms MCQ Objective Questions

Top Bilinear Forms,Quadratic Forms MCQ Objective Questions

Bilinear Forms,Quadratic Forms Question 1:

Define a real valued function B on ℝ2 × ℝ2 as follows. If v = (x1, x2), w = (y1, y2) belong to ℝ2 define B(u, w) = x1y1 – x1y2 – x2y1 + 4x2y2. Let v0 = (1, 0) and let W = {v ∈ ℝ2 : B (v0, v) = 0}. Then W

  1. is not a subspace of ℝ2 
  2. equals {(0, 0)}
  3. is the y axis 
  4. is the line passing through (0, 0) and (1, 1)

Answer (Detailed Solution Below)

Option 4 : is the line passing through (0, 0) and (1, 1)

Bilinear Forms,Quadratic Forms Question 1 Detailed Solution

Given - Define a real valued function B on ℝ2 × ℝ2 as follows. If v = (x1, x2), w = (y1, y2) belong to ℝ2 define B(u, w) = x1y1 – x1y2 – x2y1 + 4x2y2. Let v0 = (1, 0) and let W = {v ∈ ℝ2 : B (v0, v) = 0}.

Explanation -

we have B(u, w) = x1y1 – x1y2 – x2y1 + 4x2y2

v0 = (1, 0) 

W = {v ∈ ℝ2 : B (v0, v) = 0}.

Let v = (x,y)

therefore 

⇒ x - y = 0

⇒ x = y

W = {(x,x) | x ∈ }.

Hence option (iv) is correct.

Bilinear Forms,Quadratic Forms Question 2:

Let B : ℝ × ℝ → ℝ be the function B(a,b) = ab. Which of the following is true?

  1. B is a linear transformation
  2. B is a positive definite bilinear form
  3. B is symmetric but not positive definite
  4. B is neither linear nor bilinear

Answer (Detailed Solution Below)

Option 2 : B is a positive definite bilinear form

Bilinear Forms,Quadratic Forms Question 2 Detailed Solution

Given - Let B : ℝ × ℝ → ℝ be the function B(a,b) = ab. 

Explanation -  Here B : ℝ × ℝ → ℝ  and defined as B(a,b) = ab. 

Now B(α (a,b)) = B(αa, αb) = αa.αb = α2ab 

But α.B(a,b) = α.ab

So B is not a linear Transformation.

Hence option (1) is false.

Now for any  ∈ 

Also for any 

So B is Bilinear form.

Now B(a,b) = ab = ba = B(b,a) ∀ a,b ∈ R

Hence B is symmetric bilinear form.

Also, B(a, a) = a2 > 0 for all a ≠ 0

So, B is positive definite.

Thus option (2) is correct 

Bilinear Forms,Quadratic Forms Question 3:

A quadratic form Q(x, y, z) over represents 0 non trivially if there exists (a, b, c) ∈ 3 \{(0, 0, 0)} such that Q(a, b, c) = 0. Which of the following quadratic forms Q(x, y, z) over represent 0 non trivially?

  1. Q(x, y, z) = xy + z2
  2. Q(x, y, z) = x2 + 3y2 - 2z2
  3. Q(x, y, z) = x2 - xy + y2 + z2
  4. Q(x, y, z) = x2 + xy + z2

Answer (Detailed Solution Below)

Option :

Bilinear Forms,Quadratic Forms Question 3 Detailed Solution

Explanation:

Options (1):

Q(x, y, z) = xy + z2

(-1, 1, 1) ∈ 3 \{(0, 0, 0) and Q(-1, 1, 1) = -1 + 1 = 0

Q(x, y, z) = xy + zover  represent 0 non trivially

Options (2):

Q(x, y, z) = x2 + 3y2 - 2z2

(-1, 1, √2) ∈ 3 \{(0, 0, 0) and Q(-1, 1, √ 2) = 1 + 3 - 2 × 2 = 0

∴ Q(x, y,  z) = x2 + 3y2 - 2zover  represent 0 non trivially

Options (4):

Q(x, y, z) = x2 + xy + z2

(1, -2, 1) ∈ 3 \{(0, 0, 0) and Q(1, -2, 1) = 1 - 2 + 1 = 0

∴ Q(x, y,  z) = x2 + xy + zover  represent 0 non trivially

Options (3):

if possible such (a, b, c) ∈ 3 \{(0, 0, 0) exist such that

Q(x, y, z) = x2 - xy + y2 + z= 0

⇒ (x-y)+ z+ xy = 0

⇒ (x-y)+ z2> 0 so xy must less than 0

So if xy Q(x, y, z) = x2 - xy + y2 + z > 0 for any (a, b, c) ∈ 3 \{(0, 0, 0).

Q(x, y, z) = x2 - xy + y2 + zover  does not represent 0 non-trivially.

Options (1), (2), (4) are correct.

Bilinear Forms,Quadratic Forms Question 4:

Let V be a vector space of 2 × 2 matrices over the field of real numbers, and consider the bilinear form f(A, B) = 2tr(AB) - tr(A)tr(B). Then which of the following is correct?

  1. f is symmetric bilinear form
  2. f is skew-symmetric bilinear form
  3. f is alternating bilinear form
  4. none of the above

Answer (Detailed Solution Below)

Option 1 : f is symmetric bilinear form

Bilinear Forms,Quadratic Forms Question 4 Detailed Solution

Concept:

Let V be a vector space of dimension n over a field K. A map B : V × V → K  is a symmetric bilinear form on the space if

(i) B(u, v) = B(v, u) ∀ u, v ∈ V

(ii) B(u + v, w) = B(u, w) + B(v, w) ∀ u, v, w ∈ V

(iii) B(cu, v) = cB(u, v) ∀ u, v ∈ V, c ∈ K

It will be skew-symmetric bilinear if B(u, v) = - B(v, u) ∀ u, v ∈ V and is alternating if B(u, u) = 0 ∀ u ∈ V 

Explanation:

 f(A, B) = 2tr(AB) - tr(A)tr(B).

(i)  f(B, A) = 2tr(BA) - tr(B)tr(A) = 2tr(AB) - tr(A)tr(B) = f(A, B) (∵) tr(AB) = tr(BA)) ∀ A, B ∈ 

(ii) f(A + B, C) = 2tr((A + B)C) - tr(A + B)tr(C) 

                      = 2tr(AC) + 2tr(BC) - (tr(A) + tr(B))tr(C) (∵ tr(A + B) = tr(A) + tr(B))

                     = 2tr(AC) - tr(A)tr(C) + 2tr(BC) - tr(A)tr(C) = f(A, C) + f(B, C) ∀ A, B, C ∈ 

(iii) f(cA, B) =  2tr(cAB) - tr(cA)tr(B) = 2c tr(AB) - c tr(A)tr(B) = c f(A, B) (∵ tr(kA)=k tr(A)), ∀ A, B ∈ , c ∈ F

Hence f is symmetric bilinear form

(1) is true and (2)  is false.

f(A, A) = 2tr(A2) - tr(A)tr(A) = 2tr(A2) - [tr(A)]2 which is not equal to zero always.

f is not alternating

Option (3) is false.

Bilinear Forms,Quadratic Forms Question 5:

Let b: ℝ × ℝ→ be the bilinear form defined by  

b(X, Y) = x1y1 + 2x1у2 - x2y1 + 3x2y2 where X= (x1, x2) and Y = (y1, y2). Find the 2 × 2 matrix B of b relative to the basis U = {u1, u2} where u1 = (1, 0) and u2 = (1, 1).

Answer (Detailed Solution Below)

Option 2 :

Bilinear Forms,Quadratic Forms Question 5 Detailed Solution

Explanation:

Given  

b(X, Y) = x1y1 + 2x1у2 - x2y1 + 3x2y

u1 = (1, 0) and u2 = (1, 1).

the matrix   B =( ) and     where     and    

X= (x1, x2) and Y = (y1, y2)

Now,    = b((1, 0); (1, 0)) = 1 + 0 - 0 + 0 = 1 

          = b((1, 0); (1, 1)) = 1 + 2 - 0 + 0 = 3 

         = b((1,1), (0,1)) = 0 + 2 - 0 + 3 = 5

         = b((1,1), (1,1)) = 1 + 2 - 1 + 3 = 5 

Hence required matrix  is 

B = 

Therefore the correct option is option (2)   

Bilinear Forms,Quadratic Forms Question 6:

Let  and consider the symmetric bilinear form on R4 given by (v, w) = vt Aw, for v, w ∈ ℝ4. Which of the following statements is true? 

  1. A is invertible
  2. There exist non-zero vectors v, w such that 〈v, w〉 = 0
  3. 〈u, v〉 ≠ 〈u, w〉 for all non-zero vectors u, v, w with v ≠ w
  4. Every eigenvalue of A2 is positive

Answer (Detailed Solution Below)

Option 2 : There exist non-zero vectors v, w such that 〈v, w〉 = 0

Bilinear Forms,Quadratic Forms Question 6 Detailed Solution

The Correct answer is (2).

We will update the solution later.

Bilinear Forms,Quadratic Forms Question 7:

Let A = (ai, j) be a real symmetric 3 × 3 matrix. Consider the quadratic form Q(X1, X2, X3) = xt Ax where x = (X1, X2, X3)t.

Which of the following is true?

  1. If Q(x1, x2, x3) is positive definite, then ai, j > 0 for all i ≠ j.
  2. If Q(x1, x2, x3) is positive definite, then ai, i > 0 for all i.
  3. If ai, j > 0 for all i ≠ j, then Q(x1, x2, x3) is positive definite.
  4. If ai, i > 0 for all i, then Q(x1, x2, x3) is positive definite.

Answer (Detailed Solution Below)

Option 2 : If Q(x1, x2, x3) is positive definite, then ai, i > 0 for all i.

Bilinear Forms,Quadratic Forms Question 7 Detailed Solution

Concept:

A quadratic form Q = xTAx is called positive definite if Q > 0 for all x ≠ 0 or if all the eigenvalues of A or positive or if A is symmetric and has positive leading principal minors

Explanation:

 Given quadratic form is Q(X1, X2, X3) = xt Ax where x = (X1, X2, X3)t. where A = (ai, j) be a real symmetric 3 × 3 matrix.

Let A =  

Here ai, j = 0 for all i ≠ j but Q(x1, x2, x3) is positive definite as all the eigenvalues of A ire positive.

(1) is false

If ai, j > 0 for all i and A is symmetric then leading principal minors of A are positive,

Hence Q is positive definite.

(2) is true

Let A = 

Here ai, j > 0 for all i ≠ j but Q(x1, x2, x3) is not positive definite.

(3) is false

For same example (4) is also false

Bilinear Forms,Quadratic Forms Question 8:

Which of the following statements is true?

  1.  Any two quadratic forms of same rank in n-variables over ℝ are isomorphic
  2. Any two quadratic forms of same rank in n-variables over ℂ are isomorphic
  3. Any two quadratic forms in n-variables are isomorphic over ℂ
  4. A quadratic form in 4 variables may be isomorphic to a quadratic from in 10 variables

Answer (Detailed Solution Below)

Option 2 : Any two quadratic forms of same rank in n-variables over ℂ are isomorphic

Bilinear Forms,Quadratic Forms Question 8 Detailed Solution

Given - We have four statement in options.

Concept

Theorem -(i) - Two quadratic forms each in n variables are isomorphic over R if and only they have same rank and same index or their same rank and the same signature.

Theorem -(ii) - Two quadratic forms each in n variables are isomorphic over C if and only they have the same rank.

Explanation -

Option (i) is false.

Option (ii) is true.

Option (iii) is false.

For option (iv) -  Two quadratic forms are isomorphic if they become identical after a linear invertible change of variables. 

Hence the option (iv) is false.

Bilinear Forms,Quadratic Forms Question 9:

Let b: ℝ × ℝ→ be the bilinear form defined by  

b(X; Y) = x1y1 - 2x1у2 + x2y1 + 3x2y2 where X= (x1, x2) and Y = (y2, y2). Find the 2 × 2 matrix B of b relative to the basis U = {u1, u2} where u1 = (0, 1) and u2 = (1, 1).

Answer (Detailed Solution Below)

Option 4 :

Bilinear Forms,Quadratic Forms Question 9 Detailed Solution

Explanation:

Given data  

b(X; Y) = x1y1 - 2x1у2 + x2y1 + 3x2y2   ,   u1 = (0, 1) and u2 = (1, 1).

the matrix   B =( ) and     where     and    

now   

          

         

         

now then our required matrix  is 

        B 

Therefore the correct option is option (4)   

Bilinear Forms,Quadratic Forms Question 10:

Which of the following statements regarding quadratic forms in 3 variables are true? 

  1. Any two quadratic forms of rank 3 are isomorphic over   
  2. Any two quadratic forms of rank 3 are isomorphic over 
  3. There are exactly three non zero quadratic forms of rank ≤ 3 upto isomorphism over 
  4. There are exactly three non zero quadratic forms of rank 2 upto isomorphism over  and 

Answer (Detailed Solution Below)

Option :

Bilinear Forms,Quadratic Forms Question 10 Detailed Solution

Concept:

1. Two quadratic forms over R are isomorphic if they have same rank and some signature.

2. Two quadratic forms over  are isomorphic if they have same rank.

Explanation:

(1) Option (1) is false using result 1, because with same rank they can have a different signature.

(2) Option (2) is true using result 2.

(3) Option (3) quadratic form in 3 variables (non-zero) can have rank 1, 2 or 3, only and being over , with same rank they are isomorphic. Thus there are 3 quadratic forms upto isomorphic over  and (c) is true.

(4) Option (4) it is false as over  with rank 2, there is only one quadratic form (result 2).

The correct options are (2) and (3).
 

Hot Links: teen patti refer earn teen patti master gold apk teen patti circle