Evaluate using Trigonometric Identities MCQ Quiz - Objective Question with Answer for Evaluate using Trigonometric Identities - Download Free PDF

Last updated on Apr 30, 2025

Latest Evaluate using Trigonometric Identities MCQ Objective Questions

Evaluate using Trigonometric Identities Question 1:

The integral equals

  1. None of the above

Answer (Detailed Solution Below)

Option 4 :

Evaluate using Trigonometric Identities Question 1 Detailed Solution

If ">, then

And if x = \(\dfrac{\pi}{3}\), then 0\)

Evaluate using Trigonometric Identities Question 2:

The value of the integral

 is:

  1. π 
  2. π/3
  3. π/5
  4. π/7

Answer (Detailed Solution Below)

Option 3 : π/5

Evaluate using Trigonometric Identities Question 2 Detailed Solution

Concept:

The given integral is:

This represents a double integral over the upper half of the unit circle centered at the origin. So, converting it into polar coordinates simplifies the integration process.

Let and

The region of integration becomes a semicircle:

Calculation:

In polar coordinates,

So, the integral becomes:

Correct Option:

The correct answer is: 3) π/5

Evaluate using Trigonometric Identities Question 3:

The value of  is :

Answer (Detailed Solution Below)

Option 4 :

Evaluate using Trigonometric Identities Question 3 Detailed Solution

Explanation:

We are given the integral:

Integral: I =  

Step 1: Substitution

Let u = a + bx², then du = 2bx dx.

Hence, x dx = du / (2b).

After substitution, the limits change: when x = 0, u = a, and

when x = 1, u = a + b.

The integral becomes:

I = 1 / (2b) ∫aa+b (2a - u) / u² du

Step 2: Decompose the Integral

I = 1 / (2b) [ 2a ∫aa+b 1/u² du - ∫aa+b 1/u du ]

Each part is solved as follows:

  • aa+b 1/u² du = [ -1/u ]aa+b = 1/a - 1/(a+b)
  • aa+b 1/u du = ln(u)aa+b = ln(a+b) - ln(a)

Thus, the integral becomes:

I = 1 / (2b) [ 2a (1/a - 1/(a+b)) - (ln(a+b) - ln(a)) ]

Final Result:

The value of the integral is: I = 1 / (a + b)

Evaluate using Trigonometric Identities Question 4:

In I(m, n) = , m, n > 0, then I(9, 14) + I(10, 13) is 

  1. I(9, 1) 
  2. I(19, 27) 
  3. I(1, 13)
  4. I(9, 13) 

Answer (Detailed Solution Below)

Option 4 : I(9, 13) 

Evaluate using Trigonometric Identities Question 4 Detailed Solution

Calculation

Let x = sin2θ dx = 2sinθcosθdθ

⇒ 

⇒ I (9, 14) + I (10, 13) = 

 

I (9, 13) 

Hence option 4 is correct

Evaluate using Trigonometric Identities Question 5:

Let , where C is the constant of integration. 

If ,

Then α + β – γ equals : 

  1. 55 
  2. 47 
  3. 48 
  4. 62

Answer (Detailed Solution Below)

Option 1 : 55 

Evaluate using Trigonometric Identities Question 5 Detailed Solution

Calculation

= -x3 cos x + 3x2 sin x + 6x cos x - 6 sin x + c

So g(x) = -xcos x + 3x2 sin x + 6x cos x - 6 sin x 

g'(x) = 3x2 cos x + x3 sin x + 6cos x - 6cos x

So α + β – γ = 55

Hence option 1 is correct

Top Evaluate using Trigonometric Identities MCQ Objective Questions

Answer (Detailed Solution Below)

Option 1 :

Evaluate using Trigonometric Identities Question 6 Detailed Solution

Download Solution PDF

Concept:

  • sin2 x + cos2 x = 1
  • sin 2A = 2 sin A cos A
  • ∫ cos x = sin x
  • ∫ sin x = -cos x

Calculation:

Hence, 

Answer (Detailed Solution Below)

Option 4 : None of these

Evaluate using Trigonometric Identities Question 7 Detailed Solution

Download Solution PDF

Concept:

 

Calculation:

Let, 

        ----(  = 1)

       -----

Let 

Differentiating with respect to x, we get

                      

Limits become for x = 0, t = 0

for x = 1, t = 1/4 = 0.25

 

Hence, option (4) is correct.

Answer (Detailed Solution Below)

Option 2 :

Evaluate using Trigonometric Identities Question 8 Detailed Solution

Download Solution PDF

Concept:

1 + tan2 x = sec2 x

Calculation:

             (∵ 1 + tan2 x = sec2 x)

Let tanx = t

Differentiating with respect to x, we get

⇒ sec2 x dx = dt

   x          0        π/4  
    t       0    1

∴ The value of the integral is 1/2.

Answer (Detailed Solution Below)

Option 4 : 0

Evaluate using Trigonometric Identities Question 9 Detailed Solution

Download Solution PDF

Concept:

Calculation:

 Given: 

                  (1 = )

             

= 0

Answer (Detailed Solution Below)

Option 3 :

Evaluate using Trigonometric Identities Question 10 Detailed Solution

Download Solution PDF

Concept:

Definite Integral:

If ∫ f(x) dx = g(x) + C, then  = g(b) - g(a).

Trigonometric Identities:

cos 2x = 2 cos2 x - 1

Calculation:

Let I = 

⇒ I = 

⇒ I = 

⇒ I = 

⇒ I = 

⇒ I = .

Answer (Detailed Solution Below)

Option 4 : 4

Evaluate using Trigonometric Identities Question 11 Detailed Solution

Download Solution PDF

Concept:

Calculation:

Let, 

Hence, option (4) is correct.

Answer (Detailed Solution Below)

Option 1 :

Evaluate using Trigonometric Identities Question 12 Detailed Solution

Download Solution PDF

Concept:

sin2 x + cos2 x = 1

Calculation:

I = 

Let, sin x = u

cos x dx = du

= 1 - 0 - 

Answer (Detailed Solution Below)

Option 1 : 0

Evaluate using Trigonometric Identities Question 13 Detailed Solution

Download Solution PDF

Formula used:

tan(π - θ) = - tan θ  

Calculation:

Let

I =         ---(1)

According to the formula used

I = 

⇒ I = - 

From equation (1)

⇒ I = -I

⇒ 2I = 0

⇒ I = 0

∴ The value of the integral  is 0.

Answer (Detailed Solution Below)

Option 1 : 0

Evaluate using Trigonometric Identities Question 14 Detailed Solution

Download Solution PDF

Concept:

Definite Integral:

If ∫ f(x) dx = g(x) + C, then  = g(b) - g(a).

Calculation:

Let I = 

⇒ I = 

⇒ I = 

⇒ I = 0.

Answer (Detailed Solution Below)

Option 4 : None of these

Evaluate using Trigonometric Identities Question 15 Detailed Solution

Download Solution PDF

Concept:

cot2 x = cosec2 x - 1 

 

Calculation:

I =  

I =  

I =  

I =  

I =  

I =            ...(1)

Let , sin x = t 

Differentiate both side  w.r.t  x , 

cos x dx = dt   

If , x = 0 , then t = 0 

x = π /4 , then t =  

substitute above values in eq. (1) 

I =   

I =  

I =   

I = ∞  

∴ The correct option is 4). 

Hot Links: all teen patti teen patti app real teen patti teen patti all games teen patti