Direct Ratio MCQ Quiz - Objective Question with Answer for Direct Ratio - Download Free PDF
Last updated on May 23, 2025
Latest Direct Ratio MCQ Objective Questions
Direct Ratio Question 1:
If
Answer (Detailed Solution Below)
Direct Ratio Question 1 Detailed Solution
Given:
sin θ = 3/5
cos θ = 4/5
Find the value of √((1 - tan2θ) / (cot2θ - 1))
Formula used:
tan θ = sin θ / cos θ
cot θ = 1 / tan θ
Calculation:
tan θ = sin θ / cos θ
⇒ tan θ = (3/5) / (4/5)
⇒ tan θ = 3/4
cot θ = 1 / tan θ
⇒ cot θ = 4/3
Now, calculate √((1 - tan2θ) / (cot2θ - 1))
tan2θ = (3/4)2 = 9/16
cot2θ = (4/3)2 = 16/9
⇒ √((1 - tan2θ) / (cot2θ - 1))
⇒ √((1 - 9/16) / (16/9 - 1))
⇒ √((16/16 - 9/16) / (16/9 - 9/9))
⇒ √((7/16) / (7/9))
⇒ √((7/16) × (9/7))
⇒ √(9/16)
⇒ 3/4
∴ The correct answer is option (1).
Direct Ratio Question 2:
If cotθ = √11 , then the value of
Answer (Detailed Solution Below)
Direct Ratio Question 2 Detailed Solution
Given:
Formula used:
We need to find the value of:
Calculations:
First, find
Next, find
Now substitute
⇒
Simplify the numerator:
Simplify the denominator:
Thus, the expression becomes:
⇒
⇒ Simplify the fraction:
Answer:
The value is
Direct Ratio Question 3:
If 8cotθ = 7, then the value of
Answer (Detailed Solution Below)
Direct Ratio Question 3 Detailed Solution
Given:
8cotθ = 7
Concept Used:
Cotθ = 7/8
Cotθ = Base/Perpendicular
Calculation:
Hypotenuse = √(Perpendicular2 + Base2)
⇒ √(82 + 72)
⇒ √113
⇒ (1 + 8/√113)/(7/√113)
⇒ (8 + √113)/ 7
∴ The value of
Direct Ratio Question 4:
If secθ = √2, then cosecθ is equal to:
Answer (Detailed Solution Below)
Direct Ratio Question 4 Detailed Solution
Given:
secθ = √2
Formula Used:
secθ = 1/cosθ
cscθ = 1/sinθ
Calculation:
The value of cscθ is √2 .
Direct Ratio Question 5:
If tanA =
Answer (Detailed Solution Below)
Direct Ratio Question 5 Detailed Solution
Given:
tan A = 1/√10
Concept Used:
Sin A = Perpendicular/Hypotenuse
Cosec A = Hypotenuse/Perpendicular
tan A = Perpendicular/Base
Hypotenuse = √( Perpendicular2 + Base2)
Calculation:
Hypotenuse = √( Perpendicular2 + Base2)
Hypotenuse = √( √102 + 12)
⇒ √ 11
sinA + cosecA
According to the concept,
1/√11 + √11/1
⇒ 12/√11
∴ The value of sinA + cosecA is 12/√11
Top Direct Ratio MCQ Objective Questions
If
Answer (Detailed Solution Below)
Direct Ratio Question 6 Detailed Solution
Download Solution PDFGiven :
Calculation :
We know,
⇒ Secθ = 4/3, tanθ = √7/3
⇒ tan2 θ + tan4 θ = 7/9 + 49/81
⇒ (63 + 49)/81
⇒ 112/81
∴ The correct answer is 112/81.
If
Answer (Detailed Solution Below)
Direct Ratio Question 7 Detailed Solution
Download Solution PDFGiven
Calculation
Sec α = cos β/15 ......(1)
sin β = 16 × Sec α .....(2)
Putting the value of eq (1) in eq (2)
⇒ sin β = 16 × cos β/15
⇒ sin β/cos β = 16/15
⇒ P/B = 16/15
sin2β = P2/H2
H2 = P2 + B2
H2 = 256 + 225
H2 = 481
sin2β = 256/481
The value is 256/481.
If b sin θ = a, then sec θ + tan θ = ?
Answer (Detailed Solution Below)
Direct Ratio Question 8 Detailed Solution
Download Solution PDFGiven:
b sin θ= a
Concept used:
sinθ = Perpendicular/ Hypotenuse
secθ = Hypotenuse/ Base
tanθ = Perpendicular/ Base
Calculation:
bsinθ = a
sinθ = a/b
So, Perpendicular = a & Hypotenuse = b
(Hypotenuse)2 = (Perpendicular)2 + (Base)2
b2 = a2+ Base2
base2 = b2- a2
secθ = Hypotenuse/ base= b/
tanθ= perpendicular/ base= a/
So, secθ+ tanθ = b/
secθ + tanθ = (b+ a)/(
∵ (b + a) = √(b + a) × √(b + a)
⇒ secθ + tanθ =
secθ+ tanθ=
If
Answer (Detailed Solution Below)
Direct Ratio Question 9 Detailed Solution
Download Solution PDFGiven:
cos x = - (1/2)
Formula used:
Cos (180 + θ) = - cos θ
Calculation:
cos x = - (1/2)
⇒ cos x = cos (180 + 60)
⇒ cos x = cos 240
⇒ x = 240°
Tan 240° = tan (180 + 60)
⇒ tan 60° = √3
∴ The correct answer is √3.
If
Answer (Detailed Solution Below)
Direct Ratio Question 10 Detailed Solution
Download Solution PDFGiven:
Calculation:
10 sinβ = 11 cosβ
⇒ tanβ = 11/10
cos2β = 100/221
The correct option 2
If sec θ + tan θ = 5, (θ ≠ 0), then sec θ is equal to:
Answer (Detailed Solution Below)
Direct Ratio Question 11 Detailed Solution
Download Solution PDFFormula used
sec θ + tan θ = 1/(sec θ - tan θ)
Calculation
If, sec θ + tan θ = 5, then:
sec θ - tan θ = 1/5
Adding the above two we get:
⇒ 2 sec θ = 5 + 1/5
⇒ sec θ = 1/2(5 + 1/5)
The value is
The value of sec x - cos x = ?
Answer (Detailed Solution Below)
Direct Ratio Question 12 Detailed Solution
Download Solution PDFFormula used:
Sec x = (1/cos x)
Calculation:
Sec x - cos x
⇒ (1/cos x) - cos x
⇒ (1 - cos2 x)/cos x
⇒ sin2 x/cos x
⇒ tan x sin x
∴ The correct answer is tan x sin x.
If
Answer (Detailed Solution Below)
Direct Ratio Question 13 Detailed Solution
Download Solution PDFGiven:
Concept used:
(H)Hypotenuse2 = (P)Perpendicular2 + (B)Base2
Calculation:
sinθ = P/H
So, H2 = P2 + B2
⇒ 172 = 82 + B2
⇒ 289 = 64 + B2
⇒ 225 = B2
⇒ 15 = B
Now,
tanθ = P/B
So, tanθ =
∴ The required answer is
Shortcut Trick
sinθ = 8/17 = P/H, we know the triplet P = 8, B = 15, H = 17
Now, tanθ = P/B So, tanθ = 8/15
If A + B = 90° and sin A =
Answer (Detailed Solution Below)
Direct Ratio Question 14 Detailed Solution
Download Solution PDF
A + B = 90°
SinA = 3/5
Formula Used:-
Hypotenuse2 = Perpendicular2 + Base2
Sinθ = Perpendicular(P)/Hypotenuse(H)
tanθ = Perpendicular/Base(B)
tan(90° - A) = cotA
Calculation:-
SinA = 3/5 = P/H
⇒ P = 3k and H = 5k [Where k is a constant]
Base = √(H2 - P2)
⇒ Base = √(5k)2 - (3k)2
⇒ Base = 4k
⇒ tanA = P/B
⇒ tanA = 3k/4k = 3/4
⇒ tan(90° - B) = 3/4
⇒ cotB = 3/4
⇒ tanB = 4/3
∴ The required answer is tanB = 4/3.
If tan x =
Answer (Detailed Solution Below)
Direct Ratio Question 15 Detailed Solution
Download Solution PDFGiven
tan x = -12/5
Concept
tan x = Perpendicular/base
Sin x = Perpendicular/hypotenuse
Calculation
tan x = -12/5 = Perpendicular/base
P = 12 and B = - 5
H2 = P2 + B2
H2 = 144 + 25
H2 = 169
H = 13
⇒ sin x − cot x
⇒ P/H + B/P ...(since cot is also negative in second quadrant)
⇒ (P2 + BH)PH
⇒ (144 + 65)/156
⇒ 209/156
The value is 209/156.