Modulus of Complex Number MCQ Quiz in বাংলা - Objective Question with Answer for Modulus of Complex Number - বিনামূল্যে ডাউনলোড করুন [PDF]

Last updated on Apr 15, 2025

পাওয়া Modulus of Complex Number उत्तरे आणि तपशीलवार उपायांसह एकाधिक निवड प्रश्न (MCQ क्विझ). এই বিনামূল্যে ডাউনলোড করুন Modulus of Complex Number MCQ কুইজ পিডিএফ এবং আপনার আসন্ন পরীক্ষার জন্য প্রস্তুত করুন যেমন ব্যাঙ্কিং, এসএসসি, রেলওয়ে, ইউপিএসসি, রাজ্য পিএসসি।

Latest Modulus of Complex Number MCQ Objective Questions

Modulus of Complex Number Question 1:

স্তম্ভটি মিলান (চতুর্ভুজটি z 1 , z 2 , z 3 , z 4 দ্বারা ক্রমানুসারে গঠিত)

স্তম্ভ I

স্তম্ভ II

(A)

সমান্তরিক 

(p)

 z 1 – z 4 = z 2 – z 3

(B)

আয়তক্ষেত্র

(q)

|z 1 – z 3 | = |z 2 – z 4 |

(C)

রম্বস

(r)

সম্পূর্ণ বাস্তব

(D)

বর্গক্ষেত্র

(s)

সম্পূর্ণরূপে কাল্পনিক

 

 

(t)

সম্পূর্ণরূপে কাল্পনিক

  1. (A) → (p), (r); (B) → (p), (r), (t); (C) → (p), (r), (s); (D) → (p), (r), (s), (t)
  2. (A) → (p), (t); (B) → (p), (r), (t); (C) → (p), (r), (s); (D) → (p), (r), (s)
  3. (A) → (p), (s); (B) → (p), (q), (t); (C) → (p), (r), (s); (D) → (p), (r), (t)
  4. (A) → (p), (r); (B) → (p), (r), (t); (C) → (p), (t), (s); (D) → (r), (s), (t)

Answer (Detailed Solution Below)

Option 1 : (A) → (p), (r); (B) → (p), (r), (t); (C) → (p), (r), (s); (D) → (p), (r), (s), (t)

Modulus of Complex Number Question 1 Detailed Solution

হিসাব:

একটি সমান্তরিক বিবেচনা করুন যার শীর্ষবিন্দু z 1 , z 2 , z 3 , z 4 ক্রমানুসারে রয়েছে।

বিকল্প (A): সমান্তরিক

আমরা জানি যে বিপরীত বাহুগুলি সমান এবং সমান্তরাল।

⇒ z2 − z1 = z3 − z4

⇒ z 1 + z 3 = z 4 + z 2

⇒ z 1 − z 4 = z 2 − z 3

(p) সঠিক।

এছাড়াও, z 2 − z 1 = z 3 − z 4

⇒ -(z 1 - z 2 ) = z 3 - z 4

= - 1, যা সম্পূর্ণ বাস্তব।

(r) সঠিক।

বিকল্প (B): আয়তক্ষেত্র

আমরা জানি যে বিপরীত বাহুগুলি সমান এবং সমান্তরাল এবং তাদের সংশ্লিষ্ট বাহুগুলির মধ্যে কোণ হল π/2

⇒ z 2 − z 1 = z 3 − z 4

⇒ z 1 + z 3 = z 4 + z 2

⇒ z 1 − z 4 = z 2 − z 3

(p) সঠিক।

এছাড়াও, z 2 − z 1 = z 3 − z 4

⇒ -(z 1 - z 2 ) = z 3 - z 4

= - 1, যা সম্পূর্ণ বাস্তব।

(r) সঠিক।

এছাড়াও, arg = π/2

সম্পূর্ণরূপে কাল্পনিক।

(t) সঠিক

বিকল্প (C): রম্বস

আমরা জানি যে সমস্ত বাহু সমান এবং কর্ণদ্বয়ের মধ্যবর্তী কোণ হল π/2

⇒ z 2 − z 1 = z 3 − z 4

⇒ z 1 + z 3 = z 4 + z 2

⇒ z 1 − z 4 = z − z

(p) সঠিক।

এছাড়াও, z 2 − z 1 = z 3 − z 4

⇒ -(z 1 - z 2 ) = z 3 - z 4

= - 1, যা সম্পূর্ণ বাস্তব।

(r) সঠিক।

এছাড়াও, arg = π/2

সম্পূর্ণরূপে কাল্পনিক।

(গুলি) সঠিক।

বিকল্প (D): বর্গক্ষেত্র

আমরা জানি যে সমস্ত বাহু সমান এবং সমান্তরাল এবং তাদের সংশ্লিষ্ট বাহু এবং কর্ণগুলির মধ্যে কোণ হল π/2।

⇒ z 2 − z 1 = z 3 − z 4

⇒ z + জেড = জেড + জেড

⇒ z 1 − z 4 = z 2 − z 3

(p) সঠিক।

এছাড়াও, z 2 − z 1 = z 3 − z 4

⇒ -(z 1 - z 2 ) = z 3 - z 4

= - 1, যা সম্পূর্ণ বাস্তব।

(r) সঠিক।

এছাড়াও, arg = π/2

সম্পূর্ণরূপে কাল্পনিক।

(গুলি) সঠিক।

এছাড়াও, arg = π/2

সম্পূর্ণরূপে কাল্পনিক।

(t) সঠিক

∴ (A) → (p), (r); (B) → (p), (r), (t); (C) → (p), (r), (s); (D) → (p), (r), (s), (t)

সঠিক উত্তর হল বিকল্প

Modulus of Complex Number Question 2:

যদি z1 = 1 - 2i, z2 = 1 + i এবং z3 = 3 + 4i হয়, তাহলে এর মান কত?

Answer (Detailed Solution Below)

Option 3 :

Modulus of Complex Number Question 2 Detailed Solution

ধারণা:

যদি z = a + ib হয়, তাহলে |z| =

যদি z = a + ib হয়, তাহলে =

|z1z2| = |z1| x |z2|

গণনা:

প্রদত্ত z1 = 1 - 2i , z2 = 1 + i এবং z3 = 3 + 4i

= =

অনুরূপভাবে = 2 x = 2 x = 2 x = (1 - i)

= (1 - i)

\(\frac{1}{z_{2}} \) =

= z3 x \(\frac{1}{z_{2}} \) = (3 + 4i) x

=

আমাদের খুঁজে বের করতে হবে

= x

= x

= x

= x

=

=

=

=

=

=

মান নির্ণয় করে পাই .

Top Modulus of Complex Number MCQ Objective Questions

Modulus of Complex Number Question 3:

যদি z1 = 1 - 2i, z2 = 1 + i এবং z3 = 3 + 4i হয়, তাহলে এর মান কত?

Answer (Detailed Solution Below)

Option 3 :

Modulus of Complex Number Question 3 Detailed Solution

ধারণা:

যদি z = a + ib হয়, তাহলে |z| =

যদি z = a + ib হয়, তাহলে =

|z1z2| = |z1| x |z2|

গণনা:

প্রদত্ত z1 = 1 - 2i , z2 = 1 + i এবং z3 = 3 + 4i

= =

অনুরূপভাবে = 2 x = 2 x = 2 x = (1 - i)

= (1 - i)

\(\frac{1}{z_{2}} \) =

= z3 x \(\frac{1}{z_{2}} \) = (3 + 4i) x

=

আমাদের খুঁজে বের করতে হবে

= x

= x

= x

= x

=

=

=

=

=

=

মান নির্ণয় করে পাই .

Modulus of Complex Number Question 4:

স্তম্ভটি মিলান (চতুর্ভুজটি z 1 , z 2 , z 3 , z 4 দ্বারা ক্রমানুসারে গঠিত)

স্তম্ভ I

স্তম্ভ II

(A)

সমান্তরিক 

(p)

 z 1 – z 4 = z 2 – z 3

(B)

আয়তক্ষেত্র

(q)

|z 1 – z 3 | = |z 2 – z 4 |

(C)

রম্বস

(r)

সম্পূর্ণ বাস্তব

(D)

বর্গক্ষেত্র

(s)

সম্পূর্ণরূপে কাল্পনিক

 

 

(t)

সম্পূর্ণরূপে কাল্পনিক

  1. (A) → (p), (r); (B) → (p), (r), (t); (C) → (p), (r), (s); (D) → (p), (r), (s), (t)
  2. (A) → (p), (t); (B) → (p), (r), (t); (C) → (p), (r), (s); (D) → (p), (r), (s)
  3. (A) → (p), (s); (B) → (p), (q), (t); (C) → (p), (r), (s); (D) → (p), (r), (t)
  4. (A) → (p), (r); (B) → (p), (r), (t); (C) → (p), (t), (s); (D) → (r), (s), (t)

Answer (Detailed Solution Below)

Option 1 : (A) → (p), (r); (B) → (p), (r), (t); (C) → (p), (r), (s); (D) → (p), (r), (s), (t)

Modulus of Complex Number Question 4 Detailed Solution

হিসাব:

একটি সমান্তরিক বিবেচনা করুন যার শীর্ষবিন্দু z 1 , z 2 , z 3 , z 4 ক্রমানুসারে রয়েছে।

বিকল্প (A): সমান্তরিক

আমরা জানি যে বিপরীত বাহুগুলি সমান এবং সমান্তরাল।

⇒ z2 − z1 = z3 − z4

⇒ z 1 + z 3 = z 4 + z 2

⇒ z 1 − z 4 = z 2 − z 3

(p) সঠিক।

এছাড়াও, z 2 − z 1 = z 3 − z 4

⇒ -(z 1 - z 2 ) = z 3 - z 4

= - 1, যা সম্পূর্ণ বাস্তব।

(r) সঠিক।

বিকল্প (B): আয়তক্ষেত্র

আমরা জানি যে বিপরীত বাহুগুলি সমান এবং সমান্তরাল এবং তাদের সংশ্লিষ্ট বাহুগুলির মধ্যে কোণ হল π/2

⇒ z 2 − z 1 = z 3 − z 4

⇒ z 1 + z 3 = z 4 + z 2

⇒ z 1 − z 4 = z 2 − z 3

(p) সঠিক।

এছাড়াও, z 2 − z 1 = z 3 − z 4

⇒ -(z 1 - z 2 ) = z 3 - z 4

= - 1, যা সম্পূর্ণ বাস্তব।

(r) সঠিক।

এছাড়াও, arg = π/2

সম্পূর্ণরূপে কাল্পনিক।

(t) সঠিক

বিকল্প (C): রম্বস

আমরা জানি যে সমস্ত বাহু সমান এবং কর্ণদ্বয়ের মধ্যবর্তী কোণ হল π/2

⇒ z 2 − z 1 = z 3 − z 4

⇒ z 1 + z 3 = z 4 + z 2

⇒ z 1 − z 4 = z − z

(p) সঠিক।

এছাড়াও, z 2 − z 1 = z 3 − z 4

⇒ -(z 1 - z 2 ) = z 3 - z 4

= - 1, যা সম্পূর্ণ বাস্তব।

(r) সঠিক।

এছাড়াও, arg = π/2

সম্পূর্ণরূপে কাল্পনিক।

(গুলি) সঠিক।

বিকল্প (D): বর্গক্ষেত্র

আমরা জানি যে সমস্ত বাহু সমান এবং সমান্তরাল এবং তাদের সংশ্লিষ্ট বাহু এবং কর্ণগুলির মধ্যে কোণ হল π/2।

⇒ z 2 − z 1 = z 3 − z 4

⇒ z + জেড = জেড + জেড

⇒ z 1 − z 4 = z 2 − z 3

(p) সঠিক।

এছাড়াও, z 2 − z 1 = z 3 − z 4

⇒ -(z 1 - z 2 ) = z 3 - z 4

= - 1, যা সম্পূর্ণ বাস্তব।

(r) সঠিক।

এছাড়াও, arg = π/2

সম্পূর্ণরূপে কাল্পনিক।

(গুলি) সঠিক।

এছাড়াও, arg = π/2

সম্পূর্ণরূপে কাল্পনিক।

(t) সঠিক

∴ (A) → (p), (r); (B) → (p), (r), (t); (C) → (p), (r), (s); (D) → (p), (r), (s), (t)

সঠিক উত্তর হল বিকল্প

Hot Links: teen patti joy apk teen patti royal - 3 patti teen patti star apk teen patti all app