Which of the following real quadratic forms on \(\mathbb{R}\)2 is positive definite?

This question was previously asked in
CSIR-UGC (NET) Mathematical Science: Held on (26 Nov 2020)
View all CSIR NET Papers >
  1. Q(X, Y) = XY
  2. Q(X, Y) = X2 - XY + Y2
  3. Q(X, Y) = X2 + 2XY + Y2
  4. Q(X, Y) = X2 + XY

Answer (Detailed Solution Below)

Option 2 : Q(X, Y) = X2 - XY + Y2
Free
Seating Arrangement
3.3 K Users
10 Questions 20 Marks 15 Mins

Detailed Solution

Download Solution PDF

Concept:

(i) Q ∶ R2 → R is said to be positive definite if Q(x, y) > 0 ∀ (x, y) ≠ (0, 0)

(ii) A symmetric matrix is positive definite ⇔ It's all eigenvalues are positive

Explanation:

(1) Q(1, -1) = -1 \(\ngtr\) 0, so no positive definite.

(3) Q(x, -x) = x2 - 2x2 + x2 = 0 \(\ngtr\) 0, so no positive definite.

(4) Q(x, -x) = x2 - x2 = 0 \(\ngtr\) 0, so no positive definite. 

So, option (1), (3), (4) are false and option (2) is true.

Alternate Method

(1). Matrix Representation for Q(x, y) = xy is,

\(A=\left[\begin{array}{cc} 0 & 1 / 2 \\ 1 / 2 & 0 \end{array}\right]\) then det (A) = -¼ < 0

So, It's all eigenvalues can not be positive.

∵ det (A) = λ1 λ2)

option (1) is false

(2) \(A=\left[\begin{array}{cc} 1 & -1 / 2 \\ -1 / 2 & 1 \end{array}\right]\) then chA(x) = x2 - 2x + \(\frac{3}{4}\)

So, Eigen values of A are, x2 - 2x + \(\frac{3}{4}\) = 0

\(\Rightarrow x =\frac{2 \pm \sqrt{4-4 \times 3 / 4}}{2}=\frac{2 \pm 1}{2}\)

\(=\frac{3}{2}, \frac{1}{2}\)

⇒ all eigen values of A are positive.

⇒ quadratic form is positive definite. 

option (2) is true

(3) \(A=\left[\begin{array}{ll} 1 & 1 \\ 1 & 1 \end{array}\right]\) then det (A) = 0

 one eigenvalue of A is zero and other is 2.

 all eigenvalues are not positive.

 Q(x, y) is not positive definite.

option (3) is false.

(4) \(A=\left[\begin{array}{cc} 1 & +1 / 2 \\ +1 / 2 & 0 \end{array}\right] \) then det (A) = -1/4

⇒ All eigenvalues can not be positive.

 Q(x, y) is not positive definite 

option (4) is false.

Latest CSIR NET Updates

Last updated on Jun 5, 2025

-> The NTA has released the CSIR NET 2025 Notification for the June session.

-> The CSIR NET Application Form 2025 can be submitted online by 23rd June 2025

-> The CSIR UGC NET is conducted in five subjects -Chemical Sciences, Earth Sciences, Life Sciences, Mathematical Sciences, and Physical Sciences. 

-> Postgraduates in the relevant streams can apply for this exam.

-> Candidates must download and practice questions from the CSIR NET Previous year papers. Attempting the CSIR NET mock tests are also very helpful in preparation.

More Linear Algebra Questions

Get Free Access Now
Hot Links: teen patti lucky teen patti classic teen patti master downloadable content