Question
Download Solution PDFx = 1 వద్ద f(x) = \(\left\{\begin{array}{cl} \rm K x^2, & \rm x \geq 1 \\ 4, & \rm x<1\end{array}\right.\) అనే ప్రమేయం అవిచ్ఛిన్నంగా ఉంటే, K విలువ ఎంత?
Answer (Detailed Solution Below)
Detailed Solution
Download Solution PDFఉపయోగించిన భావన:
x = a వద్ద f(x) ప్రమేయం అవిచ్ఛిన్నంగా ఉండాలంటే, ఈ షరతు తప్పనిసరిగా తీర్చాలి
\( \lim_{x\to a^+}f(x) =\lim_{x\to a^-}f(x) = f(a)\)
గణన:
f(x) = \(\left\{\begin{array}{cl} \rm K x^2, & \rm x \geq 1 \\ 4, & \rm x<1\end{array}\right.\) x = 1 వద్ద అవిచ్ఛిన్నంగా ఉండాలంటే,
\(\lim_{x\to 1^+}f(x) =\lim_{x\to 1^-}f(x) = f(1)\)
⇒ \(\lim_{x\to 1^+}(Kx^2) =\lim_{x\to 1^-}(4) = K\times(1)^2\)
హద్దును తీసుకుంటే,
\(K=4= K\)
కాబట్టి, K = 4.
Last updated on Jan 10, 2025
-> The OSSTET Result has been released.
-> The Odisha Secondary School Teachers Eligibility Test was held on 17th January 2025.
-> Candidates who have completed graduation and a degree in Education can appear for this exam.
-> Those who qualify the OSSTET can apply for the post of Secondary School Teacher in Odisha.
-> Candidates can check the OSSTET Previous Year Papers which help them to get the difficulty level of the exam. Also, attempt the OSSTET Test Series which helps you in preparation.