Question
Download Solution PDFएक आयत 48 सेमी लांब आणि 14 सेमी रुंद आहे. जर कर्ण लांब बाजूने θ कोन बनवतो, तर (sec θ + cosec θ) किती आहे?
Answer (Detailed Solution Below)
Detailed Solution
Download Solution PDFदिलेल्याप्रमाणे:
एक आयत 48 सेमी लांब आणि 14 सेमी रुंद आहे
वापरलेले सूत्र:
sec θ = कर्ण/पाया
cosec θ = कर्ण/पर्पेंडिक्युला
पायथागोरस प्रमेय
(कर्ण)2 = (लंब)2 + (पाया)2
गणना:
त्रिकोण ABC काटकोन त्रिकोण आहे:
कर्ण = AC = x = \(\sqrt {{{48}^2} + {{14}^2}} = \sqrt {2304 + 196} = \sqrt {2500}\) = 50
येथे,
Sec θ = AC/AB = 50/48
Cosec θ = AC/BC = 50/14
त्यामुळे,
(sec θ + cosec θ) = (50/48) + (50/14) = 1550/336 = 775/168
∴ sec θ + cosec θ चे मूल्य 775/168 आहे
Last updated on Jun 26, 2025
-> The UPSC CDS Exam Date 2025 has been released which will be conducted on 14th September 2025.
-> Candidates had applied online till 20th June 2025.
-> The selection process includes Written Examination, SSB Interview, Document Verification, and Medical Examination.
-> Attempt UPSC CDS Free Mock Test to boost your score.
-> Refer to the CDS Previous Year Papers to enhance your preparation.