एक आयत 48 सेमी लांब आणि 14 सेमी रुंद आहे. जर कर्ण लांब बाजूने θ कोन बनवतो, तर (sec θ + cosec θ) किती आहे?

This question was previously asked in
CDS Maths Previous Paper 9 (Held On: 2 Feb 2020)
View all CDS Papers >
  1. \(\frac{{775}}{{168}}\)
  2. \(\frac{{725}}{{168}}\)
  3. \(\frac{{375}}{{84}}\)
  4. \(\frac{{325}}{{84}}\)

Answer (Detailed Solution Below)

Option 1 : \(\frac{{775}}{{168}}\)
Free
UPSC CDS 01/2025 General Knowledge Full Mock Test
8.1 K Users
120 Questions 100 Marks 120 Mins

Detailed Solution

Download Solution PDF

दिलेल्याप्रमाणे:

एक आयत 48 सेमी लांब आणि 14 सेमी रुंद आहे

वापरलेले सूत्र:

sec θ = कर्ण/पाया

cosec θ = कर्ण/पर्पेंडिक्युला

पायथागोरस प्रमेय

(कर्ण)2 = (लंब)2 + (पाया)2

गणना:

F2 Ashish.K 26-05-2020 Savita D4

त्रिकोण ABC काटकोन त्रिकोण आहे:

कर्ण = AC = x = \(\sqrt {{{48}^2} + {{14}^2}} = \sqrt {2304 + 196} = \sqrt {2500}\) = 50

येथे,

Sec θ = AC/AB = 50/48

Cosec θ = AC/BC = 50/14

त्यामुळे,

(sec θ + cosec θ) = (50/48) + (50/14) = 1550/336 = 775/168 

∴ sec θ + cosec θ चे मूल्य 775/168 आहे

Latest CDS Updates

Last updated on Jun 26, 2025

-> The UPSC CDS Exam Date 2025 has been released which will be conducted on 14th September 2025.

-> Candidates had applied online till 20th June 2025.

-> The selection process includes Written Examination, SSB Interview, Document Verification, and Medical Examination.  

-> Attempt UPSC CDS Free Mock Test to boost your score.

-> Refer to the CDS Previous Year Papers to enhance your preparation. 

Get Free Access Now
Hot Links: teen patti master king teen patti app teen patti 100 bonus teen patti vip