Differentiation of Parametric Functions MCQ Quiz in मल्याळम - Objective Question with Answer for Differentiation of Parametric Functions - സൗജന്യ PDF ഡൗൺലോഡ് ചെയ്യുക

Last updated on Apr 11, 2025

നേടുക Differentiation of Parametric Functions ഉത്തരങ്ങളും വിശദമായ പരിഹാരങ്ങളുമുള്ള മൾട്ടിപ്പിൾ ചോയ്സ് ചോദ്യങ്ങൾ (MCQ ക്വിസ്). ഇവ സൗജന്യമായി ഡൗൺലോഡ് ചെയ്യുക Differentiation of Parametric Functions MCQ ക്വിസ് പിഡിഎഫ്, ബാങ്കിംഗ്, എസ്എസ്‌സി, റെയിൽവേ, യുപിഎസ്‌സി, സ്റ്റേറ്റ് പിഎസ്‌സി തുടങ്ങിയ നിങ്ങളുടെ വരാനിരിക്കുന്ന പരീക്ഷകൾക്കായി തയ്യാറെടുക്കുക

Latest Differentiation of Parametric Functions MCQ Objective Questions

Top Differentiation of Parametric Functions MCQ Objective Questions

Differentiation of Parametric Functions Question 1:

Find  if x = a (θ + sin θ) and y = a (1 - cos θ)

  1. tan θ
  2. sin θ
  3. None of these

Answer (Detailed Solution Below)

Option 1 :

Differentiation of Parametric Functions Question 1 Detailed Solution

CONCEPT:

If x = f(t), y = g(t), where t is a parameter, then 

CALCULATION:

Given: x = a (θ + sin θ) and y = a (1 - cos θ)

Here, we have to find 

So, first we have to find dx/dθ and dy/dθ

⇒ 

⇒ 

As we know that, if x = f(t), y = g(t), where t is a parameter, then 

⇒ 

Hence, correct option is 1.

Differentiation of Parametric Functions Question 2:

Differentiate  with respect to ln x

Answer (Detailed Solution Below)

Option 1 :

Differentiation of Parametric Functions Question 2 Detailed Solution

Concept:

Parametric Form:

If f(x) and g(x) are the functions in x, then 

 =  

Calculation:

Let f(x) = and g(x) = ln x

 = (2x)

 = 2x 

Also

 =

Now Differentiation of f(x) with respect to g(x) is 

 =  

 = 

 = 2x2

Differentiation of Parametric Functions Question 3:

If function f(x) = sin2 x - cos2 x and another function g(x) = 2tan x, then find the differentiation of f(x) with respect to g(x). 

  1. sin2 x cos
  2. sin 2x cos
  3. 2 sin x cos
  4. sin 2x cos 2x 

Answer (Detailed Solution Below)

Option 2 : sin 2x cos

Differentiation of Parametric Functions Question 3 Detailed Solution

Concept:

Parametric Form:

If f(x) and g(x) are the functions in x, then 

 =  

 

Calculation:

Given f(x) = sin2 x - cos2 x and g(x) = 2 tan x

 = 2 sin x cos x - 2 cos x (-sin x)

 = 4 sin x cos x = 2 sin 2x

Also

 = 2 sec2 x

Now Differentiation of f(x) with respect to g(x) is 

 =  

 = 

 = sin 2x cos

Differentiation of Parametric Functions Question 4:

Comprehension:

Directions: For the next two (02) items that follow:

Consider the curve x = a (cos θ + θ sin θ) and y = a (sin θ - θ cos θ)

What is  equal to?

  1. -cosec2 θ
  2. None of the above

Answer (Detailed Solution Below)

Option 3 :

Differentiation of Parametric Functions Question 4 Detailed Solution

Calculation:

We have, dy/dθ = a(θ sin θ ) and dx/dθ = a θ cos θ

Hence, option (3) is correct.

Differentiation of Parametric Functions Question 5:

Derivative of x2 w.r.t. x3 is:

  1. √x
  2. 0

Answer (Detailed Solution Below)

Option 4 :

Differentiation of Parametric Functions Question 5 Detailed Solution

Concept:

Chain Rule of Derivatives: For two functions u and v of x, we have: .

 

Calculation:

Using the chain rule of derivatives, we have:

Differentiation of Parametric Functions Question 6:

Comprehension:

For the next three (3) items that follow:

Consider the parametric equation

What is  equal to?

Answer (Detailed Solution Below)

Option 4 :

Differentiation of Parametric Functions Question 6 Detailed Solution

Concept:

Using the Chain Rule:

 

Calculation:

Using equation of circle: x2 + y2 = a2

Differentiation of Parametric Functions Question 7:

Find dy/dx, if y = 3sin2 θ , x = 2 cos θ?

  1. 3x
  2. 6x

Answer (Detailed Solution Below)

Option 4 :

Differentiation of Parametric Functions Question 7 Detailed Solution

Concept:

Differentiation of parametric functions:

If x = f(t), y = g(t), where t is a parameter, then 

Calculation:

Given function is y = 3sin2 θ , x = 2 cos θ ?

We differentiate the function with respect to θ first

⇒  

As we know that, if x = f(t), y = g(t), where t is a parameter, then 

⇒ 

⇒ 

∵ x = 2cos θ ⇒ cosθ = x/2

⇒ 

Hence, option 4 is correct.

Differentiation of Parametric Functions Question 8:

Find the value of dy/dx if x = cos t, y = sin t.

  1. -tan t
  2. -cot t
  3. cot t
  4. tan t

Answer (Detailed Solution Below)

Option 2 : -cot t

Differentiation of Parametric Functions Question 8 Detailed Solution

Explanation:

x = cos t 

Differentiating w.r.t. t, we get,

y = sin t

Differentiating w.r.t. t, we get,

Thus, 

Differentiation of Parametric Functions Question 9:

If  where t be the parameter then 

Answer (Detailed Solution Below)

Option 3 :

Differentiation of Parametric Functions Question 9 Detailed Solution

Concept:

If x = f(t), y = f(t) where t be the parameter then to find 

Use chain rule 

Calculations:

Given, 

Here x = f(t), y = f(t).

To find , use chain rule ....(1)

Now,  and 

⇒  and 

Put these values in equation (1) 

 = 

Multiply and divide the above equation by t.

 

Differentiation of Parametric Functions Question 10:

What is the derivative of f(tan x) w.r.t. g(sec x) at x = , if f'(1) = 2 and g'(√2) = 4?

  1. √2
  2. √3
  3. None of these.

Answer (Detailed Solution Below)

Option 2 :

Differentiation of Parametric Functions Question 10 Detailed Solution

Concept:

Derivatives of Trigonometric Functions:

Chain Rule of Derivatives:

  • .
  • .


Calculation:

Let v = f(tan x) and u = g(sec x).

Now,  = f'(tan x).sec2 x and  = g'(sec x).tan x.sec x.

And 

⇒ 

Substituting the given values f'(1) = 2 and g'(√2) = 4, we get:

 = 1/√2.

Hot Links: teen patti gold apk download teen patti vungo teen patti casino download