What is the transfer function of a phase lag compensator? The values of ∝ and τ are given as ∝ > 1 and τ > 0:

This question was previously asked in
ESE Electronics 2011 Paper 2: Official Paper
View all UPSC IES Papers >
  1. \(\frac{1}{ \propto }\frac{{\left( {s + \frac{1}{\tau }} \right)}}{{\left( {s + \frac{1}{{ \propto \tau }}} \right)}}\)
  2. \(\frac{1}{ \propto }\frac{{\left( {s - \frac{1}{\tau }} \right)}}{{\left( {s -\frac{1}{{ \propto \tau }}} \right)}}\)
  3. \(\frac{1}{ \propto }\frac{{\left( {s + \frac{1}{\tau }} \right)}}{{\left( {s - \frac{1}{{ \propto \tau }}} \right)}}\)
  4. \(\frac{1}{ \propto }\frac{{\left( {s - \frac{1}{\tau }} \right)}}{{\left( {s + \frac{1}{{ \propto \tau }}} \right)}}\)

Answer (Detailed Solution Below)

Option 1 : \(\frac{1}{ \propto }\frac{{\left( {s + \frac{1}{\tau }} \right)}}{{\left( {s + \frac{1}{{ \propto \tau }}} \right)}}\)
Free
ST 1: UPSC ESE (IES) Civil - Building Materials
6.5 K Users
20 Questions 40 Marks 24 Mins

Detailed Solution

Download Solution PDF

Concept:

The transfer function of the phase lag compensator is given by

\(G\left( s \right) = \frac{{1 + \tau s}}{{1 + a\tau s}}\)

∝ > 1 and τ > 0

\(G\left( s \right) = \frac{\tau ({s + \frac{1}{\tau}})}{\alpha \tau ({s + \frac{1}{\alpha \tau}})}\)

\(G\left( s \right) = \frac{ ({s + \frac{1}{\tau}})}{\alpha ({s + \frac{1}{\alpha \tau}})}\)

For a lag compensator poles are more closer to the origin than zeros. 

Important Points

The transfer function of phase lag compensator is given by

\(G\left( s \right) = \frac{{1 + Ts}}{{1 + aTs}}\)

\(G\left( {j\omega } \right) = \frac{{1 + j\omega T}}{{1 + j\omega aT}}\)

Phase angle, \(\angle G\;\left( {j\omega } \right) = {\tan ^{ - 1}}\omega T - {\tan ^{ - 1}}a\omega T\)

ϕ = tan-1 ωT – tan-1 aωT

The maximum phase lag occurs at ωm­ such that \(\frac{{d\phi }}{{d\omega }} = 0\)

\(\Rightarrow {\omega _m} = \frac{1}{{T\sqrt a }}\)

It is a Geometric mean of its two corner frequencies

\({\omega _m} = \sqrt {\frac{1}{T} \times \frac{1}{{aT}}} = \frac{1}{{T\sqrt a }}\)

The maximum phase lag,

\({\phi _m} = {\tan ^{ - 1}}\omega T - {\tan ^{ - 1}}a\omega T\)

\(= {\tan ^{ - 1}}\left( {\frac{1}{{T\sqrt \alpha }}} \right)T - {\tan ^{ - 1}}\left( {\frac{1}{{T\sqrt \alpha }}T} \right)\)   

\(= {\tan ^{ - 1}}\frac{1}{{\sqrt a }} - {\tan ^{ - 1}}\sqrt a\)

\({\phi _m} = {\tan ^{ - 1}}\left( {\frac{{\frac{1}{{\sqrt a }} - \sqrt a }}{{1 + \sqrt a \cdot \frac{1}{{\sqrt a }}}}} \right)\)

\({\phi _m} = {\tan ^{ - 1}}\left( {\frac{{1 - a}}{{2\sqrt a }}} \right)\)

\(= {\sin ^{ - 1}}\left( {\frac{{1 - a}}{{a + 1}}} \right) = {\cos ^{ - 1}}\left( {\frac{{2\sqrt a }}{{a + 1}}} \right)\)
Latest UPSC IES Updates

Last updated on Jul 2, 2025

-> ESE Mains 2025 exam date has been released. As per the schedule, UPSC IES Mains exam 2025 will be conducted on August 10. 

-> UPSC ESE result 2025 has been released. Candidates can download the ESE prelims result PDF from here.

->  UPSC ESE admit card 2025 for the prelims exam has been released. 

-> The UPSC IES Prelims 2025 will be held on 8th June 2025.

-> The selection process includes a Prelims and a Mains Examination, followed by a Personality Test/Interview.

-> Candidates should attempt the UPSC IES mock tests to increase their efficiency. The UPSC IES previous year papers can be downloaded here.

More Compensators Questions

More Controllers and Compensators Questions

Get Free Access Now
Hot Links: teen patti apk download teen patti wala game teen patti master download