The value of \(\tan \left(\cos ^{-1} \frac{4}{5}+\tan ^{-1} \frac{2}{3}\right)=\)

This question was previously asked in
VITEEE PYP_125Qs150Min125Marks
View all VITEEE Papers >
  1. \( \frac{6}{17} \)
  2. \(\frac{7}{16} \)
  3. \(\frac{16}{7}\)
  4. None of these

Answer (Detailed Solution Below)

Option 4 : None of these
Free
JEE Main 2025 (Session II) All India Live Test
4 K Users
75 Questions 300 Marks 180 Mins

Detailed Solution

Download Solution PDF

Calculation

Given, tan \([cos^{-1}(\frac{4}{5}) + tan^{-1}(\frac{2}{3})]\) = tan \([tan^{-1}(\frac{\sqrt{5^2 - 4^2}}{4}) + tan^{-1}(\frac{2}{3})]\)

= tan \([tan^{-1}(\frac{3}{4}) + tan^{-1}(\frac{2}{3})]\) = tan \([tan^{-1}(\frac{\frac{3}{4} + \frac{2}{3}}{1 - \frac{3 \times 2}{4 \times 3}})]\)

= tan \([tan^{-1}(\frac{9+8}{12-6})]\) = tan \([tan^{-1}(\frac{17}{6})]\) = \(\frac{17}{6}\)

Hence option 4 is correct

Latest VITEEE Updates

Last updated on Jul 3, 2025

->Vellore Institute of Technology will open its application form for 2026 on November 4, 2025.

->The VITEEE 2026 exam is scheduled to be held from April 20, 2026 to April 27, 2026.

->VITEEE exams are conduted for admission to undergraduate engineering programs at the Vellore Institute of Technology (VIT) and its affiliated campus.

->12th pass candidates can apply for the VITEEE exam.

Get Free Access Now
Hot Links: teen patti game online teen patti gold download apk teen patti master teen patti royal