The Fourier series expansion of the saw-toothed waveform f(x) = x in (- π, π) of period 2π gives the series, \(1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \ldots\)

The sum is equal to

This question was previously asked in
ESE Electrical 2017 Official Paper
View all UPSC IES Papers >
  1. \(\frac{\pi }{2}\)
  2. \(\frac{{{\pi ^2}}}{4}\)
  3. \(\frac{{{\pi ^2}}}{{16}}\)
  4. \(\frac{\pi }{4}\)

Answer (Detailed Solution Below)

Option 4 : \(\frac{\pi }{4}\)
Free
ST 1: UPSC ESE (IES) Civil - Building Materials
6.1 K Users
20 Questions 40 Marks 24 Mins

Detailed Solution

Download Solution PDF

Concept:

If f(x) is periodic function of period ‘’T’’ then f(x) can be expressed as below:

\(f\left( x \right) = \frac{{{a_0}}}{2} + \mathop \sum \limits_{n = 1}^\infty {a_n}\cos nx + \mathop \sum \limits_{n = 1}^\infty {b_n}\sin \left( {nx} \right)\)

Where \({a_n} = \frac{2}{T}\mathop \smallint \nolimits_0^T f\left( x \right) \cdot \cos nx\;dx\)

\({b_n} = \frac{2}{T}\;\mathop \smallint \nolimits_0^T f\left( x \right) \cdot \sin nxdx\)

\({a_0} = \frac{1}{T}\;\mathop \smallint \nolimits_0^T f\left( x \right)dx\)

If f(x) is odd function, then only the coefficients of sin nx exists (i.e. an = 0 & a0 = 0).

Calculation:

We are given f(x) = x for x ∈ (-π, π)

sin a f(x) = x is odd So, an = 0, a0 = 0

So, now we have to find bn,

\({b_n} = \frac{2}{{2\pi }}\mathop \smallint \nolimits_{ - \pi }^\pi x \cdot \sin \left( {nx} \right)dx = \frac{1}{\pi }\mathop \smallint \nolimits_{ - \pi }^\pi x \cdot {\rm{sin}}\left( {nx} \right)dx\)

\(\Rightarrow {{b}_{n}}=\frac{2}{\pi }\mathop{\int }_{0}^{\pi }x\cdot \sin \left( nx \right)dx~\{\because ~\mathop{\int }_{-a}^{a}f\left( x \right)=2\mathop{\int }_{0}^{a}f\left( x \right)~if~f\left( x \right)~is~odd\}\)

\(\Rightarrow {{b}_{n}}=\frac{2}{n}\cdot \left( -{{\left( -1 \right)}^{n}} \right)\)

\(f\left( x \right)=x=\frac{-2}{n}\cdot {{\left( -1 \right)}^{n}}\cdot \text{sin}\left( nx \right)\)

\(f\left( x \right)=x=2\sin x-\sin 2x+\frac{2}{3}\sin 3x-\frac{2}{4}\sin 2x+\ldots\)

Now put \(x=\frac{\pi }{2}\) to find \(f\left( \frac{\pi }{2} \right)\)

\(\Rightarrow f\left( \frac{\pi }{4} \right)=\frac{\pi }{2}=\left( 2 \right)~\left[ 1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+\ldots \right]\)

\(\Rightarrow 1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}=\frac{\pi }{4}\)

Hence required sum of series is

Alternate Method:

Taylor expansion of tan-1x is expressed in below:

\({{\tan }^{-1}}x=x-\frac{{{x}^{3}}}{3}+\frac{{{x}^{5}}}{5}-\frac{{{x}^{7}}}{7}+\ldots for;~\left| x \right|<1\)

Put x = 9, above expansion series

\({{\tan }^{-1}}x={{\tan }^{-1}}1=\frac{\pi }{4}=1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+\frac{1}{9}\ldots\)

Hence \(\frac{\pi }{4}\) is required sum of series.
Latest UPSC IES Updates

Last updated on May 28, 2025

->  UPSC ESE admit card 2025 for the prelims exam has been released. 

-> The UPSC IES Prelims 2025 will be held on 8th June 2025.

-> The selection process includes a Prelims and a Mains Examination, followed by a Personality Test/Interview.

-> Candidates should attempt the UPSC IES mock tests to increase their efficiency. The UPSC IES previous year papers can be downloaded here.

More Calculus Questions

Get Free Access Now
Hot Links: teen patti earning app teen patti lucky teen patti game teen patti diya