एका उभ्या रॉडची लांबी आणि तिच्या सावलीचे गुणोत्तर 2 : √12 आहे. सूर्याचा उन्नत कोन शोधा.

This question was previously asked in
RRB NTPC Graduate Level CBT-I Official Paper (Held On: 05 Jun, 2025 Shift 3)
View all RRB NTPC Papers >
  1. 30°
  2. 75°
  3. 45°
  4. 60°

Answer (Detailed Solution Below)

Option 1 : 30°
Free
RRB NTPC Graduate Level Full Test - 01
100 Qs. 100 Marks 90 Mins

Detailed Solution

Download Solution PDF

दिले आहे:

रॉडची लांबी : सावलीची लांबी = 2 : √12

वापरलेले सूत्र:

tan θ = रॉडची उंची ÷ सावलीची लांबी

गणना:

⇒ tan θ = 2 ÷ √12

⇒ tan θ = 2 ÷ 2√3 = 1 ÷ √3

⇒ θ = 30°

∴ सूर्याचा उन्नत कोन 30° आहे.

Latest RRB NTPC Updates

Last updated on Jul 22, 2025

-> RRB NTPC Undergraduate Exam 2025 will be conducted from 7th August 2025 to 8th September 2025. 

-> The RRB NTPC UG Admit Card 2025 will be released on 3rd August 2025 at its official website.

-> The RRB NTPC City Intimation Slip 2025 will be available for candidates from 29th July 2025. 

-> Check the Latest RRB NTPC Syllabus 2025 for Undergraduate and Graduate Posts. 

-> The RRB NTPC 2025 Notification was released for a total of 11558 vacancies. A total of 3445 Vacancies have been announced for Undergraduate posts while a total of 8114 vacancies are announced for Graduate-level posts in the Non-Technical Popular Categories (NTPC).

-> Prepare for the exam using RRB NTPC Previous Year Papers.

->  HTET Admit Card 2025 has been released on its official site

More Heights and Distances Questions

Hot Links: teen patti gold online teen patti master plus all teen patti game teen patti game paisa wala